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1 Question
Let 𝑓 (𝑧) = (𝑧2 − 1)1/2, and consider two different branches of the function 𝑓 (𝑧):

𝑓1 (𝑧): branch cut (−∞, 1] ∪ [1,∞), with 𝑓1 (𝑥) = −𝑖
√
1 − 𝑥2 for real 𝑥 ∈ (−1, 1);

𝑓2 (𝑧): branch cut [−1, 1], with 𝑓2 (𝑥) =
√
𝑥2 − 1 for real 𝑥 > 1.

Find the limiting values of 𝑓1 and 𝑓2 above and below their respective branch cuts. Prove that 𝑓1 is an even
function, i.e. 𝑓1 (𝑧) = 𝑓1 (−𝑧), and that 𝑓2 is odd.

2 Answer
We do everything for 𝑓1, then repeat it for 𝑓2. I do want to stress that, in this topic more than many others, it is a good idea
to work through at least some of the calculations for yourself as well as reading this, you will understand the processes a lot
better!

2.1 𝑓1

2.1.1 Expression

Weneed to come upwith a way to define 𝑓1 that produces the correct values on the specified interval. Consider the following
diagram:

𝑟− 𝑟+

𝑧

𝜃+𝜃−
−1 1

Figure 1: 𝑧 in general position, defining 𝑟± and 𝜃±

We define 𝑟± as the distances to 𝑧 from ±1, and the angles 𝜃± are as given in the diagram. If −1 < 𝑥 < 1, therefore, the
quantities defined above are given by

𝑟− 𝑟+

𝑧 = 𝑥
𝜃+

−1 1

Figure 2: 𝑧 = 𝑥 in the interval (−1, 1). 𝜃− is 0 and not shown

𝑟+ = 1 − 𝑥 𝜃+ = 𝜋

𝑟− = 1 + 𝑥 𝜃− = 0
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and then
−√𝑟+𝑟−𝑒𝑖 (𝜃++𝜃−)/2 = −

√
(1 − 𝑥)(1 + 𝑥)𝑒𝑖 (𝜋+0)/2 = −𝑖

√
1 − 𝑥2

as required. Therefore we take
𝑓1 (𝑧) = −√𝑟+𝑟−𝑒𝑖 (𝜃++𝜃−)/2.

2.1.2 Values above and below branch cuts

In theory this is one branch cut, but it is less confusing in this case to consider the halves separately.

𝑟− 𝑟+
𝑧

𝜃+𝜃−
𝑥−1 1

Figure 3: 𝑧 approaching 𝑥 on the right part of the branch cut from above

Right branch cut from above Here,

𝑟+ → 𝑥 − 1 𝜃+ → 0

𝑟− → 𝑥 + 1 𝜃− → 0

so as 𝜀 ↓ 0,
𝑓1 (𝑥 + 𝑖𝜀) → −

√
(𝑥 − 1) (𝑥 + 1)𝑒𝑖 (0+0)/2 = −

√
𝑥2 − 1.

𝑟−

𝑟+

𝑧

𝜃+𝜃−

𝑥−1 1

Figure 4: 𝑧 approaching 𝑥 on the right part of the branch cut from below

Right branch cut from below Here,

𝑟+ → 𝑥 − 1 𝜃+ → 2𝜋

𝑟− → 𝑥 + 1 𝜃− → 0

so as 𝜀 ↓ 0,
𝑓1 (𝑥 − 𝑖𝜀) → −

√
(𝑥 − 1)(𝑥 + 1)𝑒𝑖 (2𝜋+0)/2 = +

√
𝑥2 − 1.

This makes sense: we expect to have a discontinuity at a branch cut.

𝑟−

𝑟+
𝑧

𝜃+
𝜃−

𝑥 −1 1

Figure 5: 𝑧 approaching 𝑥 on the left part of the branch cut from above

Left branch cut from above

𝑟+ → 1 − 𝑥 𝜃+ → 𝜋

𝑟− → −1 − 𝑥 𝜃− → 𝜋

so as 𝜀 ↓ 0,
𝑓1 (𝑥 + 𝑖𝜀) → −

√
(1 − 𝑥)(−1 − 𝑥)𝑒𝑖 (𝜋+𝜋 )/2 = +

√
𝑥2 − 1.

This is perhaps not what you might have guessed had you tried to treat the branch cut as a single curve.
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𝑟−
𝑟+

𝑧

𝜃+

𝜃−

𝑥 −1
1

Figure 6: 𝑧 approaching 𝑥 on the left part of the branch cut from above

Left branch cut from below

𝑟+ → 1 − 𝑥 𝜃+ → 𝜋

𝑟− → −1 − 𝑥 𝜃− → −𝜋

so as 𝜀 ↓ 0,
𝑓1 (𝑥 − 𝑖𝜀) → −

√
(1 − 𝑥) (−1 − 𝑥)𝑒𝑖 (𝜋−𝜋 )/2 = −

√
𝑥2 − 1.

2.1.3 Evenness

Here there is only one way to get from 𝑧 to −𝑧: through the middle interval.

𝑟− 𝑟+

𝑧

𝑟 ′−
𝑟 ′+

−𝑧

𝜃+𝜃−
𝜃 ′+

𝜃 ′−

−1
1

Figure 7: 𝑧 and −𝑧 in general position with 𝑟±, 𝜃±, 𝑟 ′±, 𝜃 ′
± labelled, the unprimed angles deform continuously into the primed

ones along the marked path.

From the diagram, remembering that 𝜃± should vary continuously as we move along the path,

𝑟 ′+ = 𝑟− 𝜃 ′+ = 𝜋 + 𝜃−
𝑟 ′− = 𝑟+ −𝜃 ′− = 𝜋 − 𝜃+

If the last result is not clear, remember that 𝜃 ′− is positive above the axis too, since it is defined the same way as 𝜃−; hence
we need an extra − on the equality we obtain from geometry.
In particular, this means that

𝑟 ′+𝑟
′
− = 𝑟+𝑟− 𝜃 ′+ + 𝜃 ′− = 𝜃+ + 𝜃−,

and so
𝑓1 (−𝑧) =

√
𝑟 ′+𝑟 ′−𝑒

𝑖 (𝜃 ′++𝜃 ′−)/2 =
√
𝑟+𝑟−𝑒

𝑖 (𝜃++𝜃−)/2 = 𝑓1 (𝑧),
and so 𝑓1 is indeed even.
Of course having proven this, the results about the left branch cut follow from those for the right branch cut, but it is

good practice to work through both anyway.
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2.2 𝑓2

2.2.1 Expression

𝑟− 𝑟+

𝑧

𝜃+𝜃−
−1 1

Figure 8: 𝑧 in general position, defining 𝑟± and 𝜃±

We need to define 𝑓2 (𝑧) so that 𝑓2 (𝑥) =
√
𝑥2 − 1 for 𝑥 > 1.

𝑟−
𝑟+

𝑧 = 𝑥−1 1

Figure 9: 𝑧 in the interval (1,∞) showing 𝑟±, 𝜃±: the latter are both 0

𝑟+ = 𝑥 − 1 𝜃+ = 0

𝑟− = 1 + 𝑥 𝜃− = 0

and then √
𝑟+𝑟−𝑒

𝑖 (𝜃++𝜃−)/2 =
√
(𝑥 − 1)(1 + 𝑥)𝑒𝑖 (0+0)/2 =

√
𝑥2 − 1

as required. Therefore we take
𝑓2 (𝑧) =

√
𝑟+𝑟−𝑒

𝑖 (𝜃++𝜃−)/2.

2.2.2 Values above and below branch cuts

There is definitely only one branch cut here, so we only have to do it once.

𝑟− 𝑟+
𝑧

𝜃+
𝜃−

𝑥−1 1

Figure 10: 𝑧 approaching 𝑥 on the branch cut from above

Branch cut from above

𝑟+ → 1 − 𝑥 𝜃+ → 𝜋

𝑟− → 1 + 𝑥 𝜃− → 0

so as 𝜀 ↓ 0,
𝑓2 (𝑥 + 𝑖𝜀) →

√
(1 − 𝑥)(1 + 𝑥)𝑒𝑖 (𝜋+0)/2 = +𝑖

√
𝑥2 − 1.

𝑟− 𝑟+
𝑧 𝜃+

𝜃−

𝑥−1 1

Figure 11: 𝑧 approaching 𝑥 on the branch cut from below
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Branch cut from below

𝑟+ → 1 − 𝑥 𝜃+ → −𝜋
𝑟− → 1 + 𝑥 𝜃− → 0

so as 𝜀 ↓ 0,
𝑓2 (𝑥 + 𝑖𝜀) →

√
(1 − 𝑥)(1 + 𝑥)𝑒𝑖 (−𝜋+0)/2 = −𝑖

√
𝑥2 − 1.

and again we get discontinuity, and this time a preview of the oddness result.

2.2.3 Oddness

We have two ways to get from 𝑧 to −𝑧, we consider the one that passes to the right of 1.1

𝑟− 𝑟+

𝑧

𝑟 ′−
𝑟 ′+

−𝑧

𝜃+𝜃−

𝜃 ′+𝜃 ′−

−1 1

Figure 12: 𝑧 and −𝑧 in general position with 𝑟±, 𝜃±, 𝑟 ′±, 𝜃 ′
± labelled, the unprimed angles deform continuously into the primed

ones along the marked path.

From the diagram,

𝑟 ′+ = 𝑟− −𝜃 ′+ = 𝜋 − 𝜃−

𝑟 ′− = 𝑟+ −𝜃 ′− = 𝜋 − 𝜃+

If the 𝜃± results are not clear, as before remember that 𝜃 ′± are positive above the axis too, since they are defined the same
way as 𝜃±; hence in both cases this time we need an extra − on the equality we obtain from geometry.
In particular, this means that

𝑟 ′+𝑟
′
− = 𝑟+𝑟− 𝜃 ′+ + 𝜃 ′− = 𝜃+ + 𝜃− − 2𝜋,

and so
𝑓2 (−𝑧) =

√
𝑟 ′+𝑟 ′−𝑒

𝑖 (𝜃 ′++𝜃 ′−)/2 =
√
𝑟+𝑟−𝑒

𝑖 (𝜃++𝜃−−2𝜋 )/2 = −𝑓2 (𝑧),

and so 𝑓2 is indeed odd.

1A worthwhile exercise is to carry out the same calculation for going the other way, and check it agrees.
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