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§  Throughout, z is a complex number. Any definition of
the trigonometrical functions that works for complex num-
bers may be used, but for definiteness you may assume
the definition is via the Maclaurin series. Our aim in this
handout is to derive expansions for the trigonometrical (and
hyperbolic) functions similar to those that polynomials and
rational functions have: as a product over their roots in the
case of the continuous functions sine and cosine, or for the
others, a “partial fractions” expansion over their singularit-
ies. Achieving this is rather more difficult than for polyno-
mials: since all six trigonometrical functions are periodic,
they all have infinitely many zeros or infinitely many sin-
gularities.

§  We start by proving the formula

sinπz = πz

∞∏
k=1

(
1 − z2

k2

)
, ()

famously first derived by Euler, and first properly justified
by Weierstrass.

There is a straightforward argument that owes much to a
well-known proof of the Wallis product,

π

2
=

∞∏
k=1

2k

2k − 1
2k

2k + 1
, ()

using integrals.,  We begin with

In(z) B
∫ π/2

0

cos 2zt cosn t dt .

Since I0(z) = sinπz/(2z) and I0(0) = π/2, we have

I0(z)

I0(0)
=

sin πz
πz
.

We now derive a recurrence relation for In(z). This goes in

the same way as usual: we integrate by parts.

In(z) =

∫ π/2

0

cos 2zt cosn t dt

=
[ 1
2z

sin 2zt cosn t
]π/2
0

+
n

2z

∫ π/2

0

sin 2zt sin t cosn−1 t dt

= 0 +
[
− n

4z2
cos 2xt sin t cosn−1 t

]π/2
0

− n

4z2

∫ π/2

0

cos 2zt
(
cosn t − (n − 1) sin2 t cosn−2 t

)
dt

= 0 +
n2

4z2
In(z) −

n(n − 1)
4z2

In−2(x)

since sin2 t + cos2 t = 1. Rearranging gives

In−2(z) =
n2 − 4z2
n(n − 1) In(x).

Naturally the same is true for z = 0, although the derivation
will need to be a little different. Dividing one relation by the
other then gives

In−2(z)

In−2(0)
=

n2 − 4z2
n2

In(z)

In(0)
=

(
1 − 4z2

n2

)
In(z)

In(0)
.

Iterating thism − 1 times from n = 2 gives

I0(z)

I0(0)
=

I2m(z)

I2m(0)

m∏
k=1

(
1 − 4z2

(2k)2

)
=

I2m(z)

I2m(0)

m∏
k=1

(
1 − z2

k2

)
.

Finally, we need to show that I2m(z)/I2m(0)→ 1 asm → ∞.
It is possible to derive this without recourse to general

results, but we shall instead take the opportunity to prove
something genuinely useful:

eorem  (Approximation to the identity). Let f : (a,b)→
C be continuous and bounded, and let φn : (a,b)→ R be a se-
quence of continuous funions that satisfy the following:

. φn(x) ⩾ 0 for all x ∈ (a,b),

.
∫ b
a φn = 1,

. ere is c ∈ [a,b] so that given any ε > 0 and δ > 0,
there is N so that

∫ c−δ
a φn+

∫ b
c+δ φn < ε for any n > N .

There are various derivations of this in Euler’s vast œuvre; the first proof is in the celebrated paper [] (in which Euler shows that
∑∞

k=1
1/k2 = π 2/6),

while one of the clearest is in his (still very readable) textbook [, Cap. XI, esp. § ].
His general theory of expanding a complex-analytic functionas an infinite product is enunciated in [].
Precisely what these are and why they are the best thing ever will be explained in IB Comple Anali; alas, we have no time for such joys at this juncture.
We are aware of at least two expositions of this type of proof [, ], and while both use similar ideas to the following, the proof of convergence we shall
employ instead uses a very useful theorem from analysis, rather than results about specific functions.

Many other proofs exist: [, , , , ] are a selection of recent elementary ones, with varying levels of sophistication.
And which, indeed, we will use again for other integrals in the sequel.
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en

lim
n→∞

∫ b

a
f φn = f (c).

Heuristically, the third criterion forces the φn to bunch up
around x = c; combining this with the first two conditions
forces the same area to becomemore andmore concentrated
around x = c , so the values of f around c are a larger and
larger proportion of the value of the integral. Since f is con-
tinuous, for small enough δ these values are very close to
f (c). The proof will essentially be a formalisation of this
argument.
Why (apart from sheer delight in generality) would we

prove this over a seemingly simpler result? Firstly, as oc-
curs frequently in mathematics, the general result is in some
sense easier to prove than special cases, because one pares
down the required properties to the essentials, and will no
longer be distracted by irrelevant algebraic properties of the
objects involved. Secondly, having proved this once, we can
apply it to lots of different functions, rather than constantly
working ad hoc.

Proof. Pick ε > 0. Using the second condition, we have

�����
∫ b

a
f φn − f (0)

����� =
�����
∫ b

a
(f (x) − f (0))φn(x)dx

�����
⩽
�����
∫ c+δ

c−δ
(f (x) − f (0))φn(x)dx

�����
+
�����
∫ c−δ

a
(f (x) − f (0))φn(x)dx

�����
+
�����
∫ b

c+δ
(f (x) − f (0))φn(x)dx

�����
Since f is continuous, we can choose δ small enough that
| f (x)− f (0)| < ε/2 for every x ∈ (c − δ , c + δ). Then using
the triangle inequality, ���∫ д��� ⩽ ∫

|д |, and the first condition
in the theorem,

�����
∫ c+δ

c−δ
(f (x) − f (0))φn(x)dx

����� ⩽
∫ c+δ

c−δ
| f (x) − f (0)|φn(x)dx

⩽
ε

2

∫ c+δ

c−δ
φn(x)dx

⩽
ε

2

∫ b

a
φn(x)dx =

ε

2

Similarly, f is bounded, by M say, so | f (x) − f (0)| ⩽ 2M ,
and the latter two integrals can also be bounded by using

the triangle inequality:�����
∫ c−δ

a
(f (x) − f (0))φn(x)dx

����� ⩽
∫ c−δ

a
| f (x) − f (0)|φn(x)dx

⩽ 2M

∫ c−δ

a
φn�����

∫ b

c+δ
(f (x) − f (0))φn(x)dx

����� ⩽
∫ b

c+δ
| f (x) − f (0)|φn(x)dx

⩽ 2M

∫ b

c+δ
φn ,

and by the third condition in the theorem, we can choose N
large enough that

∫ c−δ
a φn +

∫ b
c+δ φn ⩽ ε/(4M) for n > N .

Thus �����
∫ b

a
f φn − f (0)

����� < ε

2
+ 2M

ε

4M
= ε

for n > N . Since this holds for any ε > 0, the result fol-
lows. □

In particular, since φn(t) = (cosn t)/In(0) satisfies the
conditions of the theorem on (0,π/2) and f (t) = cos 2zt is
continuous and bounded with f (0) = 1, the required limit
is 1. The Euler product follows.

§  In exactly the same way, we can show using the odd-m
integrals that

cosπz =

∞∏
k=1

(
1 − z2

(k − 1/2)2

)
. ()

§  Wemay obtain other partial fractions expansions from
the product. Taking the logarithmic derivative of the finite
product,

π cotπz − 1

z
=

I ′0(z)

I0(z)
=

m∑
k=1

( 1

z − k +
1

z + k

)
+

I ′2m(z)

I2m(z)
.

The last term can be written as

I ′2m(z)

I2m(0)

I2m(0)

I2m(z)
,

so once again we can use the theorem, with φn(t) =
(cosn t)/In(0) and f (t) = −2t sin 2zt , from which we im-
mediately see that the limit of the first fraction is 0 asm →
∞. The second fraction converges to 1 as before, whence

π cotπz =
1

z
+

∞∑
k=1

( 1

z − k +
1

z + k

)
, ()

a formula also known to Euler.,  A further differentiation
gives

π2 csc2 πz =

m∑
k=−m

1

(z − k)2 −
I ′′2m(z)

I2m(z)
+

(
I ′2m(z)

I2m(z)

)2
,

Those alarmed by taking the logarithm of a product of possibly complex numbers will lose nothing by simply beginning with the expression f ′/f and
cancelling.

First published in [] (special case of a formula in § , explicitly given in § ), and also found in [, Cap. X, esp. § ]
See also my IB Mehod handout Fourier Series/e Sine Produ Formula/A Cotangent Series for another derivation of this result using Fourier series.
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and exactly the same argument for f (t) = −(2t)2 sin 2zt
shows that both remainder terms converge to 0, whence

π2 csc2 πz =

∞∑
k=−∞

1

(z − k)2 . ()

§  Similar results are obtainable from the cosine product
by the same process, namely

π tanπz = −
∞∑

k=1

(
1

z − (k − 1/2) +
1

z + (k − 1/2)

)
()

and

π2 sec2 πz =

∞∑
k=−∞

1

(z − (k − 1/2))2 . ()

§  A natural question is “what about the cosecant and the
secant?”. We can obtain both from trigonometrical identities
involving functions we already know about. In particular,

cscθ = 1
2 cot

1
2θ −

1
2 cot

1
2 (θ + π),

which could have been guessed from the graph. It is
straightforward to check that it really is true:

cot 1
2θ − cot

1
2 (θ + π) =

cos (θ/2)
sin (θ/2) −

cos (θ/2 + π/2)

sin (θ/2 + π/2)

=
cos (θ/2)
sin (θ/2) +

sin (θ/2)
cos (θ/2)

=
cos2 (θ/2) + sin2 (θ/2)
sin (θ/2) cos (θ/2)

=
2

cscθ .

Since secθ = csc (π − θ), we also obtain

secθ = 1
2 cot (

1
2θ + 1

4π) −
1
2 cot (

1
2θ −

1
4π),

whence some calculation gives

π cscπz =

∞∑
k=1

(−1)k
( 1

z − k +
1

z + k

)
()

π secπz =

∞∑
k=1

(−1)k
(

1

z − (k − 1/2) −
1

z + (k − 1/2)

)
.

()

(The secant is quite frequently the odd one out in such
formulae: it is also the only one whose Taylor expansion
does involve the Bernoulli numbers.)

§  Finally, we can give versions of all of these formulae
to the hyperbolic functions. Since we have allowed z to be
complex throughout, we can get these almost for free:

sin iz =
ei(iz) − e−i(iz)

2i
= −i e

−z − ez
2

= i sinhz

and similarly cosh z = cos iz, so we obtain immediately the
product formulae

sinhπz = πz

∞∏
k=1

(
1 +

z2

k2

)
()

coshπz =

∞∏
k=1

(
1 +

z2

(k − 1/2)2

)
()

and the partial fractions expansions

π cothπz =
1

z
+

∞∑
k=1

( 1

z − ik +
1

z + ik

)
()

=
1

z
+

∞∑
k=1

2z

z2 + k2
()

π2 csch2 πz =

∞∑
k=−∞

1

(z − ik)2 ()

π tanhπz =

∞∑
k=1

(
1

z − i(k − 1/2) +
1

z + i(k − 1/2)

)
()

=

∞∑
k=1

2z

z2 + (k − 1/2)2 ()

π2 sech2 πz =

∞∑
k=−∞

1

(z − i(k − 1/2))2 ()

π cschπz =
1

z
+

∞∑
k=1

(−1)k
( 1

z − ik +
1

z + ik

)
()

=
1

z
+

∞∑
k=1

(−1)k 2z

z2 + k2
()

π sechπz =

∞∑
k=1

(−1)k
(

1

z − i(k − 1/2) −
1

z + i(k − 1/2)

)
()

=

∞∑
k=1

(−1)k 2k − 1
z2 + (k − 1/2)2 ()

§  Finally, we make a brief remark about convergence.
The reader might be puzzled that we have written some of
the sums as doubly infinite and others as infinite in one dir-
ection. This stems from the definition of a doubly infinite
sum being

∞∑
k=−∞

f (k) B lim
n→∞
m→∞

n∑
k=−m

f (k),

implicitly requiring that the double limit has a value inde-
pendent of the ways in which m,n → ∞. If the summand
does not decay fast enough, this may not happen. On the
other hand, if

∑∞
k=−∞ | f (k)| is finite, the doubly infinite sum

will always make sense; such a sum is called absolutely
convergent. In particular, 1/(z − k) = −1/k + O(z/k2) as
k → ±∞, which does not decay fast enough to be absolutely

The reader may like to consider whether logarithmic differentiation of cot 1
2θ = cos 1

2θ/ sin
1
2θ gives a simpler derivation.

See my IB Mehod handoute Riemann Zeta Funion at Positive Even Integers for details.
This should be proven in Anali I.
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convergent, so while the single limit limn→∞
∑m

k=−m
1

z−k
makes sense,

∑∞
k=−∞

1
z−k does not.

To resolve this issue, it is sometimes possible to massage
the series to make it converge absolutely. In this case, we
note that

1

z − k +
1

z + k
=

1

z − k +
1

k
+

1

z + k
− 1

k
,

and now 1/(z − k) + 1/k = z/k2 + o(z/k2) for large k ,
and 1/k2 is absolutely convergent (provided we leave out
the term with k = 0). It is now possible to write the series
as a well-defined doubly-infinite sum, with one singularity
in each summand:

π cotπz =
1

z
+

∑
k ∈Z\{0}

( 1

z − k +
1

k

)
. ()

Such a “partial fractions” expansion of an analytic function
is called a Miag-Leffler expansion.
Analogous considerations apply to the products, although

the situation is more complicated. Weierstrass’s results give

sinπz = πz
∏

k ∈Z\{0}

(
1 − z

k

)
ez/k ; ()

the extra ez/k are called elementary faors, and improve the
convergence properties of the product in much the same
way as the extra 1/k did in the cotangent series.
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