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Given two differentiable functions y1,y2, theirWronskian is the
determinant

W B
�����y1 y2
y′1 y′2

����� = y1y
′
2 − y

′
1y2.

In this handout, we shall explore its uses, both in this course,
and in starred sections, in later courses’ material.

 Test for Linear Independence

Recall thaty1 andy2 are called linearly independent on (a,b) if there
do not exist α1 and α2 so that α1y1(x) + α2y2(x) = 0 for every x
in (a,b) (i.e. α1y1 + α2y2 is the zero function on (a,b)).
Result . . If y1,y2 are linearly dependent,W = 0.

. If W = 0 and y1(x) , 0 for any x ∈ (a,b), y1 and y2 are
linearly dependent.

Proof. . Suppose y1 is linearly dependent on y2. Then either
y2(x) = 0 for every x , in which case the result follows imme-
diately, or we can rewrite the linear dependence condition
as y1 = αy2 for some constant α . But then

W = y1y
′
2 − y

′
1y2 = αy2y

′
2 − αy

′
2y2 = 0.

. We note that since y2 , 0,

W = y2
1

(y2
y1

) ′
.

Since W = 0 and y1 , 0, we find that (y2/y1)′ = 0, i.e.
y2/y1 = α is constant, which as before is equivalent to
αy1 − y2 = 0, i.e. linear dependence. □

If we do allow y1(c) = 0 for some c ∈ (a,b), the latter result is
not true. Peano gave the counterexample

y1(x) B x2, y2(x) B x |x |.

One can check that y1 and y2 are linearly independent (there is a
linear combination that vanishes for positive x , and one that is for
negative x , but none for all x ). On the other hand, we all know
that y1 is differentiable with y′1(x) = 2x , and from the definition
of derivative one finds y2 is differentiable with y′2(x) = 2|x |, so

W = (x |x |)(2x) − (2|x |)(x2) = 0.

To summarise, the following implications hold:

¬LI =⇒ W = 0
W , 0 =⇒ LI

(LI and (∀x ∈ (a,b))y1(x) , 0) =⇒ W , 0
(W = 0 and (∀x ∈ (a,b))y1(x) , 0) =⇒ ¬LI

 Abel’s eorem

eorem  (Abel’s Theorem). Suppose that y1 and y2 satisfy

y′′ + py + q = 0,

where p,q are also funions of x . en

W ′ = −pW .

Of course it then follows that

W (x) =W (a) exp
(
−
∫ x

a
p
)
.

Proof. We have

W ′ = y1y
′′
2 + y

′
1y
′
2 − y

′
1y
′
2 − y

′′
1y2

= y1y
′′
2 − y

′′
1y2

= (−py′2 − qy2)y1 − y2(−py′1 − qy1)
= −p(y1y

′
2 − y

′
1y2) = −pW ,

as required. □

Corollary . If p is finite and two solutions to the differential equa-
tion

y′′ + py′ + q = 0
are linearly independent, they remain linearly independent.

Proof. W (x)/W (a) = exp
�
−
∫ x
a p

�
, so ifW (a) , 0 and p is finite,

W (x) , 0. □

 Alternative to Reduion of Order

We seek the general solution of the differential equation

y′′ + py′ + q = 0. ()

We recall the usual procedure for reduction of order: if y1 is a
(nonzero) solution, we substitute y = uy1, where u is also a func-
tion of x . Differentiating gives

(uy1)′ = u ′y1 + uy
′
1

(uy1)′′ = u ′′y1 + 2u ′y′1 + uy
′′
1 ,

so the () becomes

0 = (u ′′y1 + 2u ′y′1 + uy
′′
1 ) + p(u ′y1 + uy

′
1) + quy

= y1u
′′ + (2y′1 + py1)u ′ + (y′′1 + py1 + q)u

= y1u
′′ + (2y′1 + py1)u ′

since y1 satisfies (). This is a first-order linear equation for u ′,
(hence reduion of order) so can be solved using an integrating
factor, namely (after initially dividing by y1 to make the leading
coefficient 1) y2

1e
∫
p , so

u ′(x) = A

y2
1

exp
(
−
∫ x

a
p
)
,

which can be integrated again to give u as

u(x) = A

∫ x

a

1
(y1(t))2 e

−
∫ t
a p dt + B.
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We can obtain an equation for a second solution a different way.
Since we know thatW satisfiesW ′ + pW = 0, which we can al-
ways solve, we knowW up to a constant factor. Therefore we can
re-interpret the formula for the Wronskian as

y1y
′
2 − y

′
1y2 =W ,

a first-order equation for y2. Again, this is easy to solve using an
integrating factor, so(y2

y1

) ′
=
W

y2
1

y2
y1
= C +

∫
W

y2
1

y2 = Cy1 + y1

∫
W

y2
1
dt ,

where we havewritten the constant separately (rather than leaving
it implicit in the integral) to emphasise that we may modify y2 by
adding any constant multiple of y1. We notice that this is identical
to the reduction of order solution, but the algebra was easier.
So our new procedure is

. Solve the Abel equationW ′ + pW = 0 to findW .
. Solve the expression used to defineW ,W = y1y′2 −y

′
1y2, as

a first-order equation in y2.

 Variation of Parameters

The next stage is to produce a general way to obtain solutions to
inhomogenious equations. Suppose we have found all of the solu-
tions to the homogeneous equation (i.e. the complementary func-
tion). The big leap is that, since Ay1 + By2 satisfies the equation
with A and B constant, replacing A and B by functions may give
us enough extra freedom to satisfy the inhomogeneous equation.
Fortunately, this does turn out to be the case.
We want to solve a differential equation in the standard form

y′′ + py′ + qy = f , ()

where f is a function of x . Lety1 andy2 be two linearly independ-
ent solutions to (). Then we expect that we can write

y = u1y1 + u2y2, ()

and we wish to determineui . There is a certain amount of freedom
in choosing u1 and u2 since if we have uy1y2, it is unclear which
term to put it in: we have two unknown functions, but only one
equation. Therefore we specify the extra condition

u ′1y1 + u
′
2y2 = 0 ()

to make the problem more definite; it turns out that this will be
sufficient. Differentiating y, we find

y′ = (u ′1y1 + u
′
2y2) + u1y

′
1 + u2y

′
2 = u1y

′
1 + u2y

′
2,

y′′ = u ′1y
′
1 + u

′
2y
′
2 + u1y

′′
1 + u2y

′′
2 .

Inserting this into the differential equation (), we find

f = y′′+py′+qy = u1(y′′1 +py′1+qy1)+u2(y′′2 +py′2+qy2)+u ′1y′1+u ′2y′2,
and the first two terms cancel since yi solve the homogeneous
equation. We are left with two equations,

u ′1y1 + u
′
2y2 = 0

u ′1y
′
1 + u

′
2y
′
2 = f .

But these are linear equations for u ′1 and u ′2, and so can be solved
in exactly the same way as usual, which gives

u ′1 =
−y2 f
W
, u ′2 =

y1 f
W
,

whereW is once again theWronskian. We can now find an expres-
sion for y with a single integration: the complementary function
naturally emerges as the constants of integration in the ui ,

y = −y1

∫
y2 f
W
+ y2

∫
y1 f
W
.

It is worth noting that this can be written using one integral, as

y(x) =
∫ x

a

y1(t)y2(x) − y1(x)y2(t)
W (t) f (t)dt .

Thiswill reappear in IBMehod in the theory ofGreen’s funions.

 * Higher order differential equations

If y1, . . . ,yn are differentiable functions, their Wronskian is the
determinant

W B

������������

y1 y2 · · · yn
y′1 y′2 · · · y′n
...

...
. . .

...

y
(n−1)
1 y

(n−1)
2 · · · y

(n−1)
n

������������
.

This may be used to aid in the solution of higher-order differential
equations, although its uses are less straightforward.
The general linear homogeneous ordinary differential equation

of order n can be written as

y(n) +
n−1∑
k=0

pky
(k) = 0 ()

. Abel’s theorem

Abel’s theorem carries over with little alteration: one can show
from the definition of determinant that if

A(t) =

�����������
a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)
...

...
. . .

...
an1(t) an2(t) · · · ann (t)

�����������
=

∑
σ ∈Sn

sgn(σ )
n∏
i=1

aiσ (i)(t),

then by the product rule,

A′(t) =

�����������
a′11(t) a′12(t) · · · a′1n(t)
a21(t) a22(t) · · · a2n(t)
...

...
. . .

...
an1(t) an2(t) · · · ann (t)

�����������
+ · · · +

�����������
a11(t) a12(t) · · · a1n(t)
a21(t) a22(t) · · · a2n(t)
...

...
. . .

...
a′n1(t) a′n2(t) · · · a′nn (t)

�����������
,

i.e. one may write the derivative as the sum of the determinants
where the jth row has been replaced by its derivative.

We might expect this, based on the simple examples we’ve done using heuristics like “multiply by another x ” for constant-coefficient equations.
This particular condition also turns out to be a major simplification: it will avoid us having to worry about terms containing second derivatives of the ui .
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If one applies this to the Wronskian, one finds that in all but the
last term, the determinant has two rows equal and so is equal to
zero. Therefore

W ′ =

���������������

y1 y2 · · · yn
y′1 y′2 · · · y′n
...

...
. . .

...

y
(n−2)
1 y

(n−2)
2 · · · y

(n−2)
n

y
(n)
1 y

(n)
2 · · · y

(n)
n

���������������
.

But if all the yi satisfy (), each term in the last row can be written
as −

∑n−1
k=0 pky

(k). Applying linearity of the determinant in the
last row, we find that we again obtain n determinants, all but one
of which have two rows equal and so are zero. This leaves

W ′ =

���������������

y1 y2 · · · yn
y′1 y′2 · · · y′n
...

...
. . .

...

y
(n−2)
1 y

(n−2)
2 · · · y

(n−2)
n

−pn−1y
(n−1)
1 −pn−1y

(n−1)
2 · · · −pn−1y

(n−1)
n

���������������
= −pn−1W ,

which is of exactly the same form as Abel’s theorem for second-
order equations. Thus we can again solve forW as before,

W (x) =W (a) exp
(
−
∫ x

a
pn−1

)
.

. Reduion of order

Reduction of order works in a similar, but rather messier, man-
ner: if we know y1 solves (), we insert uy1 into this equation. We
again find that the coefficient of u vanishes, and we have a linear
equation of order n − 1 for u ′. But this may be even harder to solve
than the original equation! In the order 2 case we were lucky that
the equation was reduced to a linear first-order one, which we can
always solve. But even a third-order equation may reduce to a hor-
rible second-order equation that we can’t deal with. Exactly the
same problem occurs with the Wronskian: it gives an order n − 1
equation for yn in terms of y1,y2, . . . ,yn , which is useless unless
we know the rest of the yi , and not even easy to solve. Thus the
second-order case does not usefully generalise.

. Variation of parameters with Cramer’s rule

Contrastingly, variation of parameters extends simply to higher-
order inhomogeneous differential equations: given

y(n) +
n−1∑
k=0

pny
(k) = f ,

we look for a solution of the form

y =

n∑
j=1

ujyj ,

where yj are a linearly independent set of solutions to the homo-
geneous equation. Now impose the extra conditions

n∑
j=1

u ′jy
(k)
j = 0, k ∈ {0, 1, . . . ,n − 2}

Differentiating the expression fory n times and applying these con-
ditions gives

y(k ) =
n∑
j=1

ujy
(k)
j k ∈ {0, 1, . . . ,n − 1}

y(n) =
n∑
j=1

u ′jy
(n−1)
j + ujy

(n)
j ,

and substituting into the differential equation and using thatyj are
solutions to the homogeneous equation causes this last to become

n∑
j=1

u ′jy
(n−1)
j = f .

Hence we have a linear system of n equations
n∑
j=1

u ′jy
(k)
j = f δkn k ∈ {0, 1, . . . ,n − 1},

which we can invert in the usual way: for example, Cramer’s rule
gives u ′j =Wj/W , whereWi is the Wronskianwith the jth column
of the matrix replaced by (0, 0, . . . , f ). A single integration then
gives the result.

 * Integrals of solutions to Sturm–Liouville
equations

e following seions will make much more sense aer the second
part of IB M.
A Sturm–Liouville equation is a second-order differential equa-

tion of the form
−(pu ′)′ + qu = λwu,

where p > 0, λ is called the eigenvalue, and w > 0 the weight func-
tion.
Such equations (with particular boundary conditions that force

the solutions to have mani interesting furry animals many inter-
esting properties) are studied in IB Mehod. We are interested
in two results here: firstly, in finding an expression for

∫
u1u2w,

where u1 and u2 are solutions with corresponding distinct eigen-
values λ1 and λ2 respectively. Perhaps surprisingly, this is possible
to do in closed form.
We begin with the equations

−(pu ′1)′ + qu1 = λ1wu1
−(pu ′2)′ + qu2 = λ2wu2

()

satisfied by the functions. We can obtain the integral we are inter-
ested in in two ways: by multiplying the first equation by u2 and
integrating, or the second by u1 and integrating. These give

−
∫

(pu ′1)′u2 +
∫

qu1u2 = λ1

∫
wu1u2

−
∫

(pu ′2)′u1 +
∫

qu1u2 = λ2

∫
wu1u2.

Subtracting, we notice the q terms cancel, so

(λ1 − λ2)
∫

u1u2w = −
∫ �(pu ′1)′u2 − (pu ′2)′u1

�
.

Integrating by parts gives

−
∫ �(pu ′1)′u2 − (pu ′2)′u1

�
= −pu ′1u2 + pu

′
2u1 −

∫
(pu ′1u ′2 − pu ′2u ′1)

= p(u1u
′
2 − u

′
1u2).

Again, we see that just beyond the corners of your waking mind the material in this course there lie equations that cannot be solved explicitly. Most (but not all!) of the equations
arising from physics are second-order, which somewhat mitigates this problem, but even a general second-order equation may not have a solution that can be written down as a
simple integral. A general approach will be discussed in II Fhe Comple Mehod, but still only applies to polynomial coefficients.
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Oh hey, it’s the Wronskian again! Even better, the remaining in-
tegrals have disappeared, so we have found that∫

u1u2w = p
u1u ′2 − u

′
1u2

λ1 − λ2
= p

W (u1,u2)
λ1 − λ2

. ()

This is also a consequence of the identity

u1Lu2 − u2Lu1 = −(pW (u1,u2))′,
where L = −DpD +q is the Sturm–Liouville operator, which holds
for any u1,u2; it is known as Lagrange’s identity.
A natural question is whether we can extract any information

about
∫
u2

1w from this. Suppose that x 7→ uλ(x) solves the equa-
tion

−(pu ′λ )′ + quλ = λwuλ

and is differentiable in λ (and therefore also continuous). Then ap-
plying (), we find for eigenvalues λ and λ + h∫

uλ+huλw = p
uλ+hu

′
λ − u

′
λ+huλ

h

= p
uλ+hu

′
λ − uλu

′
λ + u

′
λuλ − u

′
λ+huλ

h

= pu ′λ
uλ+h − uλ

h
− puλ

u ′λ+h − u
′
λ

h
.

Taking the limit as h → 0 gives∫
u2
λw = p(u ′λ∂λuλ − uλ∂λu ′λ) = pW (∂λuλ ,uλ),

which may or may not be easy to compute.

 * Comparison eorems

In this section we shall discuss something a bit more exciting:
when do solutions of Sturm–Liouville equations have zeros?

eorem  (Sturm–Picone Comparison Theorem). Let
P ,p,Q,q : [a,b]⇒ R be continuous, with

0 < p ⩽ P , q ⩽ Q

and consider the two differential equations

−(Py′)′ +Qy = 0 ()
−(py′)′ + qy = 0. ()

If u is a nonzero solution of the former with successive zeros z1 and
z2 and v a solution of the laer, then either

. v has a zero in (z1, z2), or
. there is α ∈ R so that v = αu, and then p = P and q = Q .

Proof. We start by quoting the following rather mysterious (but
easily verified) identity due to Picone:(u
v

(vPu ′−upv′)
) ′
= u(Pu ′)′− u

2

v

(pv′)′+(P−p)u ′2+ p

v
2 (W (u, v))2,

()
which holds for any differentiable functions with v , 0. If we now
impose that u and v solve () and (), this simplifies to(u

v

(vPu ′ − upv′)
) ′
= (Q − q)u2 + (P − p)u ′2 + p

v
2 (W (u, v))2 ()

Suppose that v has no zeros in (z1, z2). Even if v(z1) = 0, the
limit of u/v exists at z1 (this follows from L’Hôpital’s Rule and

the uniqueness theorem for linear differential equations: if v is not
identically zero but v(a) = 0, v′(a) must be nonzero). Integrating
() over (z1, z2) gives[u
v

(vPu ′−upv′)
]z2

z1
=

∫ z2

z1

(
(Q − q)u2 + (P − p)u ′2 + p

v
2 (W (u, v))2

)
.

Whether or not v(z1) = 0 or v(z2) = 0, the left-hand side evaluates
to zero at both endpoints. But each term on the right is nonnegat-
ive, and the last term is strictly positive unless v ∝ u. So if v ̸∝ u
we obtain a contradiction, which implies that v has a zero, the first
possibility.
If v ∝ u, since u2,u ′2 > 0 are continuous and p, P ,q,Q are con-

tinuous the only way to ensure that the right-hand side vanishes
is that p = P and q = Q . □

Corollary . Suppose P > 0, Q ⩾ 0. en any nonzero solution
to −(Pu ′)′ +Qu = 0 has at most one root.

Proof. We apply the Sturm comparison theorem using p = P and
q = 0. v(x) = 1 is a nonzero solution of −(P v′)′ = 0, and has no
roots. For any interval (z1, z2), if there is a solution u with roots at
z1 and z2, v must have a zero in (z1, z2), a contradiction. □

Corollary  (Sturm ComparisonTheorem). Let P ,Q,q : [a,b]⇒ R
be continuous, with q ⩽ Q and consider the two differential equations

−(Py′)′ +Qy = 0 ()
−(Py′)′ + qy = 0. ()

If u is a nonzero solution of the former with successive zeros z1 and
z2 and v a solution of the laer, then either

. v has a zero in (z1, z2), or
. there is α ∈ R so that v = αu, and then q = Q .

This is the casep = P of the Sturm–PiconeComparisonTheorem.

Corollary  (Sturm Separation Theorem). If u, v are linearly inde-
pendent solutions of

−(Py′)′ +Qy = 0

and u(z1) = u(z2) = 0, then v has a zero in (z1, z2).

Proof. This is the q = Q case of Sturm–Picone Comparison The-
orem. We know that v , λu, so the result follows from the other
possibility in the theorem. □

Exercise Prove this directly by considering the Wronskian.
An extremely simple example of this theorem is that between

any two roots of sinax there is a root of cosax . A less silly ex-
ample is that the same is true of α cosax + β sinax and γ cosax +
δ sinax for any α , β,γ ,δ with αδ − βγ , 0.

Finally, we prove

Proposition . Let λ1 < λ2, and suppose that u1,u2 solve the
Sturm–Liouville equations

−(pu ′i )′ + qui = λiwui

on (a,b) with the same boundary conditions ui (a) = ui (b) = 0. en
u2 has more zeros in (a,b) than u1.

We first note that this result does make sense: if u1 had infin-
itely many zeros, there would be a point z where they accumulate,
and one can then show that u1(z) = u ′1(z) = 0, which again by
uniqueness would force u1 to be exactly zero.

But you knew that.
Although you may also have known that.
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Proof. We apply the Sturm Comparison Theorem to −(py′)′ + (q −
λ1w)y = 0 and −(py′)′+ (q −λ2w)y = 0. Since λ1 < λ2 and w > 0,

q − λ1w > q − λ2w,

and so if u1 has n zeros in the interior of the interval, and we write
them as z0 = a, z1, z2, . . . , zn+1 = b, the SCT gives at least one
zero in (zi−1, zi ) for i ∈ {1, 2, . . . ,n + 1}, i.e. at least n + 1 in the
interior. □

To go further would require us to use actual Sturm–Liouville
theory, so we shall stop here. The theorem to remember for later
is:

eorem . Let λ0 < λ1 < λ2 < · · · be the eigenvalues of the
Sturm–Liouville problem

−(pu ′)′ + qu = λwu

u(a) = u(b) = 0.

with corresponding eigenfunions un . en λn has n zeros in (a,b).

. ** Alternative explanation for Sturm–Liouville zeros

The following approach requires more theory, but provides per-
haps a more intuitive picture: let u(x , λ) be the solution to

−∂1(p∂1u) + qu = λu

u(a, λ) = 0, ∂1(a, λ) = 1

(as the equation is linear, the value of the derivative is immaterial
provided it is nonzero, so we can choose the latter for definiteness).
The position of a zero z of u depends on λ: it satisfies the equation

u(z(λ), λ) = 0.

Hence we can take differentiate implicitly with respect to λ:

0 = z′(λ)∂1u(z(λ), λ) + ∂2u(z(λ), λ).
Since zeros are simple, at a zero z0 and eigenvalue λ0, we have
u(z0, λ0) = 0 and ∂1u(z0, λ0) , 0, so

z′0(λ0) = − ∂2u(z0, λ0)
∂1u(z0, λ0)

Also, differentiating the differential equation with respect to λ at
λ0 gives

−∂1(p∂1∂2u) + q∂2u = w(u + λ0∂2u)
Multiplying by u and integrating with respect to x gives∫ z0

a
w(u(x , λ0))2 dx

=

∫ z0

a

�
− u∂1(p∂1∂2u) + u(q − λ0w)∂2u

�
dx

= [−pu∂1∂2u]z0
a +

∫ z0

a

�
p(∂1u)(∂1∂2u) + u(q − λ0w)∂2u

�
dx

= 0 + [(∂2u)p(∂1u)]z0
a +

∫ z0

a
(∂2u)

�
− ∂1(p∂1u) + (q − λ0w)u

�
dx

= p(z0)(∂2u(z0, λ0))(∂1u(z0, λ0)) + 0.

Plugging this into the equation for z′0(λ0) gives

z′0(λ0) = − 1
(∂1u(z0, λ0))2

∫ z0

a
(u(x , λ0))2w(x)dx < 0,

so as λ increases, the zeros of u move towards a.

 ©  R Chapling
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