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 A cosine Fourier series
Let α ∈ C \ Z. We start by doing something rather per-
verse: expanding cosαx as a Fourier series on [−π ,π ]. This
function will be continuous at π , since cosαx is even, but
not differentiable there, so we expect the coefficients to be
O(n−2) as n → ∞. Obviously there will be no sine coeffi-
cients, so we need to know
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Therefore the Fourier series is

cosαx = 2α sin πα

π
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∞∑
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Setting x = π and α = z and rearranging, we discover the
extraordinary formula

π cotπz = 1
z
+
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2z
z2 − n2 .

Now, for |z | ⩽ t , the sum on the right satisfies���� 1
z2 − n2

���� ⩽ 1
n2 − t2 ,

the latter of which converges using the integral test, so the
Weierstrass M-test implies the sum converges uniformly to
the function π cotπz − 1/z in |z | ⩽ t < 1. We can therefore
integrate
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term-by-term from 0 to z to obtain
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(notice that although this looks like something obscure has
happened, it is a correct antiderivative of the cot expression
with the correct value at 0, so must be correct). Exponenti-
ating both sides, we have found using real analysis only that
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∞∏
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(
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)
,

an identity famously extrapolated from the polynomial case
by Euler. (It is easy to derive the equivalence throughout C
using periodicity, after checking it for the right-hand side.)

 An integral and the cosecant formula

It is easy to prove analogously the formula for cosec: putting
x = 0, we find
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∞∑
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)
We can use this to provide a more plausible proof of the

value of the integral

I (s) =
∫ ∞

0

ts

1 + t
dt

t
, 0 < s < 1

than is given by just doing a contour integral.
Splitting the integral at 1 and using the substitution u =

1/t , we have
∫ ∞
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t
=
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so

I (s) =
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t
.

We can now use the binomial expansion:

1
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(−1)ktk ,
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Then if we write
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we find that the first integral becomes
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and using upper limit n − 1 for the second,
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and so
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Now, since 0 < t < 1 and s > 0, ts < t−s , and the remaining
integral is bounded by 2

∫ 1
0 t−s+n−1 dt = 1/(n − s) → 0 as

n → ∞, so we conclude
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.

But of course the right-hand side is π cscπs , so so must be
the integral.
I like to think of this as “the real reason” that I (s) =

π cscπs . A similar computation can be done on any func-
tion that can be made symmetric under x 7→ 1/x (here, the
function is in fact 1/(x1/2 + x−1/2), the extra x1/2 being ab-
sorbed by the xs ).
Indeed, this result also generalises to complex values of

s , but since this is a real argument in a real course, we shall
leave the minor modifications necessary for this generalisa-
tion as an exercise to the reader.

Pun not originally intended.
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