Fourier Series The Sine Product Formula A Cotangent Series*

Richard Chapling[†]

v2 30 November 2018

1 A cosine Fourier series

Let $\alpha \in \mathbb{C} \setminus \mathbb{Z}$. We start by doing something rather perverse: expanding $\cos \alpha x$ as a Fourier series on $[-\pi, \pi]$. This function will be continuous at π , since $\cos \alpha x$ is even, but not differentiable there, so we expect the coefficients to be $O(n^{-2})$ as $n \to \infty$. Obviously there will be no sine coefficients, so we need to know

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos \alpha x \cos nx \, dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2} (\cos (\alpha - n)x + \cos (\alpha + n)x) \, dx$$

$$= \frac{1}{\pi} \frac{1}{\alpha - n} \sin (\alpha - n)\pi + \frac{1}{\pi} \frac{1}{\alpha + n} \sin (\alpha + n)\pi$$

$$= \frac{1}{\pi} (-1)^n \left(\frac{1}{\alpha - n} + \frac{1}{\alpha + n} \right) \sin \pi\alpha$$

$$= \frac{(-1)^n}{\pi} \frac{2\alpha}{\alpha^2 - n^2} \sin \pi\alpha.$$

Therefore the Fourier series is

$$\cos\alpha x = \frac{2\alpha\sin\pi\alpha}{\pi}\left(\frac{1}{2\alpha^2} + \sum_{n=1}^{\infty}\frac{(-1)^n}{\alpha^2 - n^2}\cos nx\right).$$

Setting $x = \pi$ and $\alpha = z$ and rearranging, we discover the extraordinary formula

$$\pi \cot \pi z = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z}{z^2 - n^2}.$$

Now, for $|z| \le t$, the sum on the right satisfies

$$\left|\frac{1}{z^2 - n^2}\right| \leqslant \frac{1}{n^2 - t^2},$$

the latter of which converges using the integral test, so the Weierstrass M-test implies the sum converges uniformly to the function $\pi \cot \pi z - 1/z$ in $|z| \le t < 1$. We can therefore integrate

$$\pi \cot \pi w - \frac{1}{w} = \sum_{n=1}^{\infty} \frac{2w}{w^2 - n^2}$$

term-by-term from 0 to z to obtain

$$\log\left(\frac{\sin\pi z}{\pi z}\right) = \sum_{n=1}^{\infty}\log\left(1 - \frac{z^2}{n^2}\right)$$

(notice that although this looks like something obscure has happened, it is a correct antiderivative of the cot expression with the correct value at 0, so must be correct). Exponentiating both sides, we have found using real analysis only that

$$\sin x = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{\pi^2 n^2} \right),$$

an identity famously extrapolated from the polynomial case by Euler. (It is easy to derive the equivalence throughout $\mathbb C$ using periodicity, after checking it for the right-hand side.)

2 An integral and the cosecant formula

It is easy to prove analogously the formula for cosec: putting x = 0, we find

$$\pi \csc \pi z = \frac{1}{z} + \sum_{n=1}^{\infty} \frac{2z(-1)^n}{z^2 - n^2}$$
$$= \frac{1}{z} + \sum_{n=1}^{\infty} (-1)^n \left(\frac{1}{z+n} + \frac{1}{z-n}\right)$$

We can use this to provide a more plausible proof of the value of the integral

$$I(s) = \int_0^\infty \frac{t^s}{1+t} \frac{dt}{t}, \quad 0 < s < 1$$

than is given by just doing a contour integral. 1

Splitting the integral at 1 and using the substitution u = 1/t, we have

$$\int_{1}^{\infty} \frac{t^{s}}{1+t} \frac{dt}{t} = \int_{0}^{1} \frac{u^{-s}}{1+u^{-1}} \frac{dy}{u},$$

SC

1

$$I(s) = \int_0^1 \frac{t^s + t^{1-s}}{1+t} \frac{dt}{t}.$$

We can now use the binomial expansion:

$$\frac{1}{1+t} = \sum_{k=0}^{\infty} (-1)^k t^k,$$

^{*} Please notice the title is a senryū ...

[†] Trinity College, Cambridge

¹This was, naturally, suggested by Hardy.

or

$$\frac{1}{1+t} = \sum_{k=0}^{n} (-1)^k t^k + (-1)^{n+1} \frac{t^{n+1}}{1+t}$$

Then if we write

$$I(s) = \int_0^1 \frac{t^{s-1}}{1+t} dt + \int_0^1 \frac{t^{-s}}{1+t} dt,$$

we find that the first integral becomes

$$\int_0^1 \frac{t^{s-1}}{1+t} dt = \sum_{k=0}^n (-1)^k \int_0^1 t^{s+k-1} dt + (-1)^n \int_0^1 \frac{t^{s+n-1}}{1+t} dt$$

$$= \sum_{k=0}^n (-1)^k \frac{1}{s+k} + (-1)^n \int_0^1 \frac{t^{s+n-1}}{1+t} dt$$

$$= \frac{1}{s} + \sum_{k=1}^n (-1)^k \frac{1}{s+k} + (-1)^n \int_0^1 \frac{t^{s+n-1}}{1+t} dt,$$

and using upper limit n-1 for the second,

$$\int_0^1 \frac{t^{-s}}{1+t} dt = \sum_{k=0}^{n-1} (-1)^k \int_0^1 t^{-s+k} dt + (-1)^{n-1} \int_0^1 \frac{t^{-s+n-1}}{1+t} dt$$

$$= \sum_{k=0}^{n-1} (-1)^k \frac{1}{-s+k+1} + (-1)^{n-1} \int_0^1 \frac{t^{-s+n-1}}{1+t} dt$$

$$= \sum_{k=1}^n (-1)^k \frac{1}{s-k} - (-1)^n \int_0^1 \frac{t^{-s+n-1}}{1+t} dt,$$

and so

$$I(s) = \frac{1}{s} + \sum_{k=1}^{n} (-1)^k \left(\frac{1}{s+k} + \frac{1}{s-k} \right) + (-1)^n \int_0^1 \frac{(t^s - t^{-s})t^{n-1}}{1+t} dt$$

Now, since 0 < t < 1 and s > 0, $t^s < t^{-s}$, and the remaining integral is bounded by $2 \int_0^1 t^{-s+n-1} dt = 1/(n-s) \to 0$ as $n \to \infty$, so we conclude

$$I(s) = \frac{1}{s} + \sum_{k=1}^{\infty} (-1)^k \left(\frac{1}{s+k} + \frac{1}{s-k} \right).$$

But of course the right-hand side is $\pi \csc \pi s$, so so must be the integral.

I like to think of this as "the real reason" that $I(s) = \pi \csc \pi s$. A similar computation can be done on any function that can be made symmetric under $x \mapsto 1/x$ (here, the function is in fact $1/(x^{1/2} + x^{-1/2})$, the extra $x^{1/2}$ being absorbed by the x^s).

Indeed, this result also generalises to complex values of *s*, but since this is a real argument in a real course, we shall leave the minor modifications necessary for this generalisation as an exercise to the reader.

²Pun not originally intended.