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1 A cosine Fourier series

Let « € C\ Z. We $tart by doing something rather per-
verse: expanding cos ax as a Fourier series on [—r, 7]. This
funétion will be continuous at 7, since cos ax is even, but
not differentiable there, so we expect the coefficients to be
O(n"2) as n — co. Obviously there will be no sine coeffi-
cients, so we need to know
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Therefore the Fourier series is
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Setting x = 7 and a = z and rearranging, we discover the
extraordinary formula
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Now, for |z| < t, the sum on the right satisfies
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the latter of which converges using the integral test, so the
Weierstrass M-test implies the sum converges uniformly to
the funétion 7 cot 7z — 1/z in |z| < t < 1. We can therefore
integrate
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term-by-term from 0 to z to obtain
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(notice that although this looks like something obscure has
happened, it is a correct antiderivative of the cot expression
with the correct value at 0, so must be correct). Exponenti-
ating both sides, we have found using real analysis only that
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an identity famously extrapolated from the polynomial case
by Euler. (It is easy to derive the equivalence throughout C
using periodicity, after checking it for the right-hand side.)

2 An integral and the cosecant formula

It is easy to prove analogously the formula for cosec: putting
x =0, we find
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We can use this to provide a more plausible proof of the
value of the integral
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than is given by just doing a contour integral.H
Splitting the integral at 1 and using the substitution u =

1/t, we have
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We can now use the binomial expansion:
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Then if we write
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we find that the first integral becomes
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and using upper limit n — 1 for the second,
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and so
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Now, since 0 < ¢t < lands > 0, t* < t~°, and the remaining
integral is bounded by 2 fol t=s*=ldt = 1/(n—s) — 0 as

n — oo, so we conclude

But of course the right-hand side is 7 csc s, so so must be
the integral.

I like to think of this as “the real reason’d that I(s) =
mescms. A similar computation can be done on any func-
tion that can be made symmetric under x — 1/x (here, the
function is in fact 1/(x'/2 + x71/2), the extra x'/2 being ab-
sorbed by the x°).

Indeed, this result also generalises to complex values of
s, but since this is a real argument in a real course, we shall
leave the minor modifications necessary for this generalisa-
tion as an exercise to the reader.

*Pun not originally intended.
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