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1 Fourier series
Real Fourier series Let𝑚,𝑛 be nonnegative integers. The
following integrals are constantly useful:

ˆ 𝐿

0
cos

2𝜋𝑚𝑥
𝐿

cos
2𝜋𝑛𝑥
𝐿

𝑑𝑥 =
𝐿

2
𝛿𝑚𝑛 (1)

ˆ 𝐿

0
cos

2𝜋𝑚𝑥
𝐿

sin
2𝜋𝑛𝑥
𝐿

𝑑𝑥 = 0 (2)
ˆ 𝐿

0
sin

2𝜋𝑚𝑥
𝐿

sin
2𝜋𝑛𝑥
𝐿

𝑑𝑥 =
𝐿

2
𝛿𝑚𝑛 . (3)

These are called orthogonality relations.
Let 𝑓 be a nice function, periodic with period 𝐿. 𝑓 has a

Fourier expansion, that is,

𝑓 (𝑥) = 𝑎0
2

+
∞∑
𝑛=1

(
𝑎𝑛 cos

2𝜋𝑛𝑥
𝐿

+ 𝑏𝑛 sin
2𝜋𝑛𝑥
𝐿

)
, (4)

where

𝑎𝑛 =
2
𝐿

ˆ 𝐿

0
𝑓 (𝑥) cos 2𝜋𝑛𝑥

𝐿
𝑑𝑥 (5)

𝑏𝑛 =
2
𝐿

ˆ 𝐿

0
𝑓 (𝑥) sin 2𝜋𝑛𝑥

𝐿
𝑑𝑥. (6)

The equals sign in (4) should be interpreted as actual equal-
ity if 𝑓 is continuous at 𝑥 , and (𝑓 (𝑥+) + 𝑓 (𝑥−))/2 (i.e. the
mean value) if 𝑓 has a jump discontinuity at 𝑥 .
We can equally well write all of these integrals over the

period [−𝐿/2, 𝐿/2].
Since sine is odd and cosine is even,

• if 𝑓 is even, all the sine coefficients 𝑏𝑛 vanish

• if 𝑓 is odd, all the cosine coefficients 𝑎𝑛 vanish

Fourier sine and cosine series Given a function on
[0, 𝐿/2], there are two easy ways to extend 𝑓 to a periodic
function on [−𝐿/2, 𝐿/2]: the even extension

𝑓𝑒 (𝑥) =
{
𝑓 (𝑥) 𝑥 ⩾ 0

𝑓 (−𝑥) 𝑥 < 0

and the odd extension

𝑓𝑜 (𝑥) =

𝑓 (𝑥) 𝑥 > 0

−𝑓 (−𝑥) 𝑥 < 0

0 𝑥 = 0

Given the previous paragraph, the former has a Fourier
series containing only cosines, the latter a Fourier series
containing only sines. In particular,

𝑓𝑒 (𝑥) =
𝐴0

2
+

∞∑
𝑛=1

𝐴𝑛 cos
2𝜋𝑛𝑥
𝐿

, (7)

where

𝐴𝑛 =
4
𝐿

ˆ 𝐿/2

0
𝑓 (𝑥) cos 2𝜋𝑛𝑥

𝐿
𝑑𝑥 (8)

the Fourier cosine series of 𝑓 , and

𝑓𝑜 (𝑥) =
∞∑
𝑛=1

𝐵𝑛 sin
2𝜋𝑛𝑥
𝐿

, (9)

where

𝐵𝑛 =
4
𝐿

ˆ 𝐿/2

0
𝑓 (𝑥) sin 2𝜋𝑛𝑥

𝐿
𝑑𝑥 (10)

the Fourier sine series of 𝑓 .

Complex Fourier series Sometimes it is easier to calculate
integrals using 𝑒2𝜋𝑖𝑛𝑥/𝐿 than the trigonometric functions.
These exponentials satisfy the orthogonality relation

1
𝐿

ˆ 𝐿

0
exp

( 2𝜋𝑖𝑚𝑥
𝐿

)
exp

(
− 2𝜋𝑖𝑛𝑥

𝐿

)
𝑑𝑥 = 𝛿𝑚𝑛 . (11)

There is then an expansion

𝑓 (𝑥) =
∞∑

𝑛=−∞
𝑐𝑛 exp

( 2𝜋𝑖𝑛𝑥
𝐿

)
, (12)

where

𝑐𝑛 =
1
𝐿

ˆ 𝐿

0
𝑓 (𝑥)𝑒−2𝜋𝑖𝑛𝑥/𝐿 𝑑𝑥 (13)

An advantage of this is that we only have to calculate
one thing, the disadvantage is that any boundary conditions
cannot be inserted freely, and evenness and oddness cannot
be exploited to reduce the calculation.

Parseval’s theorem The orthogonality of the expansion
functions allows us to derive a formula for the integral of
the square of 𝑓 . First, if 𝑓 is real,

2
𝐿

ˆ 𝐿

0
𝑓 (𝑥)2 𝑑𝑥 =

𝑎20
2

+
∞∑
𝑛=1

(𝑎2𝑛 + 𝑏2𝑛) (14)

while for a possibly complex 𝑓 with a complex Fourier
series,

1
𝐿

ˆ 𝐿

0
|𝑓 (𝑥) |2 𝑑𝑥 =

∞∑
𝑛=−∞

|𝑐𝑛 |2. (15)

This expresses quantities like the “energy” that the func-
tion has.
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Convergence Convergence of Fourier series is subtle: it
is quite easy to show that the Fourier series converges to 𝑓
in mean square (that is,

´ 𝐿
0 |𝑓 − 𝑆𝑁 |2 → 0), but the sort of

convergence you actually want, namely pointwise conver-
gence is a different matter. The standard set of conditions is
due to Dirichlet: if

1. 𝑓 is absolutely integrable,

2. 𝑓 has a finite number of extrema, and

3. 𝑓 has a finite number of discontinuities,
then the Fourier series expansion converges to 𝑓 in the
sense described above.
As a rule of thumb, if 𝑓 (𝑘) are continuous for 𝑘 < 𝐾

and 𝑓 (𝐾) is continuous apart from jump discontinuities, the
Fourier coefficients decay as𝑂 (𝑛−𝐾−1).

2 Self-adjoint differential equations

2.1 Sturm–Liouville equations

Recall that in a vector space𝑉 with an inner product, a lin-
ear operator1 𝐿 has an adjoint 𝐿† if

〈𝐿𝑢, 𝑣〉 = 〈𝑢, 𝐿†𝑣〉

for every 𝑢, 𝑣 ∈ 𝑉 . We want to apply this to a vector space
𝑉 of functions on an interval [𝑎,𝑏], and an inner product
given by an integral:

〈𝑢, 𝑣〉 =
ˆ 𝑏

𝑎
𝑢 (𝑥)𝑣 (𝑥)𝑤 (𝑥) 𝑑𝑥,

where 𝑤 (𝑥) > 0 for 𝑎 < 𝑥 < 𝑏 is some fixed nonnegat-
ive weighting function. We suppose that 𝐿 is a differential
operator.2 Then integration by parts allows us to write
ˆ 𝑏

𝑎
𝐿𝑢 (𝑥)𝑣 (𝑥)𝑤 (𝑥) 𝑑𝑥 =

ˆ 𝑏

𝑎
𝑢 (𝑥) (𝐿†𝑣 (𝑥))𝑤 (𝑥) 𝑑𝑥

+ [boundary terms],

and if the space of functions can be restricted so that the
boundary terms always vanish, 𝐿† really is the adjoint of 𝐿.
The best-behaved linear operators on a vector space are

those which are self-adjoint: i.e. those with 𝐿† = 𝐿, and
this section is about the most common type of self-adjoint
differential operator, namely Sturm–Liouville operators.
The most general self-adjoint second-order differential

operator is

𝐿𝑥 =
1

𝑤 (𝑥)

(
− 𝑑

𝑑𝑥
𝑝 (𝑥) 𝑑

𝑑𝑥
+ 𝑞(𝑥)

)
where 𝑝 (𝑥), 𝑤 (𝑥) > 0 for 𝑎 < 𝑥 < 𝑏, and an operator that
can be put in this form is called a Sturm–Liouville operator.
Integrating by parts, we find we need[

𝑝 (𝑥)(𝑢 (𝑥)𝑣 ′(𝑥) − 𝑢 ′(𝑥)𝑣 (𝑥))
]𝑏
𝑎
= 0

for the boundary terms to vanish.
Common suitable boundary conditions include:

Dirichlet 𝑦 (𝑎) = 𝑦 (𝑏) = 0

Neumann 𝑦 ′(𝑎) = 𝑦 ′(𝑏) = 0

Robin 𝑦 (𝑎) + 𝜇𝑦 ′(𝑎) = 𝑦 (𝑏) + 𝜇𝑦 ′(𝑏) = 0

Mixed Some combination of the above

Periodic 𝑦 (𝑎) = 𝑦 (𝑏), 𝑦 ′(𝑎) = 𝑦 ′(𝑏)

An equation of the form

𝐿𝑥𝑦 (𝑥) = 𝜆𝑦 (𝑥),

is called a Sturm–Liouville equation. If𝑦 satisfies the bound-
ary conditions and this equation, it is called an eigenfunc-
tion. 𝜆 is called the eigenvalue.3 It is also common to mul-
tiply through by the weight function, giving the alternative
equation

(𝑝𝑦 ′) ′ + 𝑞𝑦 = 𝜆𝑤𝑦

A general second-order equation can be put in Sturm–
Liouville form using an integrating factor: if

𝐴(𝑥)𝑦 ′′ + 𝐵(𝑥)𝑦 ′ +𝐶 (𝑥)𝑦 = 0,

then writing

0 = −𝑦 ′′ − (𝐵/𝐴)𝑦 ′ − (𝐶/𝐴)𝑦 = −𝑒−𝜇 (𝑒𝜇𝑦 ′) ′ − (𝐶/𝐴)𝑦

we see 𝜇 =
´
(𝐵/𝐴) is the appropriate integrating factor.

2.2 General results

Under these conditions, there are very strong results about
the eigenvalues and eigenfunctions:

1. There are infinitely many eigenvalues, which form an
increasing sequence of real numbers,

𝜆1 < 𝜆2 < 𝜆3 < · · ·

2. The eigenfunctions with a certain eigenvalue form a
vector subspace (the eigenspace).

3. Eigenfunctions corresponding to different eigenval-
ues are orthogonal, in the sense that if 𝑢, 𝑣 have dif-
ferent eigenvalues,

〈𝑢, 𝑣〉 B
ˆ 𝑏

𝑎
𝑢 (𝑥)𝑣 (𝑥)𝑤 (𝑥) 𝑑𝑥 = 0

Non-degeneracy For Dirichlet or Neumann boundary
conditions, the eigenvalues are non-degenerate: each ei-
genspace is one-dimensional, so eigenfunctions with the
same eigenvalue are proportional.

Zeros The 𝑛th eigenfunction has 𝑛 − 1 zeros in (𝑎,𝑏),
and eigenfunctions with different eigenvalues have distinct
zeros.

1That is, a linear map𝑉 → 𝑉 .
2In the rest of this course, we are mostly concerned with real differential operators and functions, but IBQantumMechanics requires the complex version,
so we give the general results here.

3Which terminology is by analogy with the language of linear algebra, as one might expect given the preceding discussion.
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Completeness Any function satisfying the boundary con-
ditions can be written as an eigenfunction expansion:

𝑦 (𝑥) =
∞∑
𝑛=1

𝑎𝑛𝑢𝑛 (𝑥),

where
𝑎𝑛 =

〈𝑢𝑛, 𝑦〉
〈𝑢𝑛, 𝑢𝑛〉

.

Parseval’s theorem Suppose that 𝑦 has an expansion as
in the previous section. Then

〈𝑦,𝑦〉 =
∞∑
𝑛=1

|𝑎𝑛 |2〈𝑢𝑛, 𝑢𝑛〉. (16)

This follows immediately from orthogonality.
Since this is the case, 𝑆𝑁 =

∑𝑁
𝑛=1 𝑎𝑛𝑢𝑛 satisfies

〈𝑦 − 𝑆𝑁 , 𝑦 − 𝑆𝑁 〉 → 0, (17)

i.e. 𝑆𝑁 converges to 𝑦 in mean square.

2.3 Examples

Simple harmonic motion on [0, 𝐿] (for example)

− 𝑦 ′′ = 𝜆𝑦 (18)

is a Sturm–Liouville equation when appropriate boundary
conditions are applied: Sturm–Liouville eigenfunctions are
a significant generalisation of the trigonometric solutions
of this equation.

• If the boundary conditions are periodic, all eigen-
spaces but that corresponding to 𝜆 = 0 have dimen-
sion 2, which is why we obtain both the sine and co-
sine solutions.

• On the other hand, if 𝑦 (0) = 𝑦 (𝐿) = 0, the eigen-
values are (2𝜋𝑛)2, with eigenfunctions sin(2𝜋𝑚𝑥/𝐿),
and the eigenvalues are nondegenerate.

Bessel’s equation on [0, 1]

𝑥2𝑦 ′′ + 𝑥𝑦 ′ + (𝛼2𝑥2 − 𝜈2)𝑦 = 0. (19)

or in Sturm–Liouville form,

−(𝑥𝑦 ′) ′ + 𝑛
2

𝑥
𝑦 = 𝛼2𝑥𝑦,

𝛼2 the eigenvalue. This equation has the unusual feature,
shared with the trigonometric equation, that the eigenfunc-
tions are all formed from a common function by rescaling
its argument, with each eigenvalue corresponding to a zero
of this function.4

Legendre’s equation on [−1, 1]

(1 − 𝑥2)𝑦 ′′ − 2𝑥𝑦 ′ − 𝑛(𝑛 + 1)𝑦 = 0, (20)

or in Sturm–Liouville form,

−((1 − 𝑥2)𝑦 ′) ′ = 𝑛(𝑛 + 1)𝑦,

Hermite equation on (−∞,∞)

𝑦 ′′ − 2𝑥𝑦 ′ + 2𝑛𝑦 = 0, (21)

or in Sturm–Liouville form,

−(𝑒−𝑥2𝑦 ′) ′ = 2𝑛𝑒−𝑥
2
𝑦

Laguerre equation on (0,∞)

𝑥𝑦 ′′ + (𝑎 + 1 − 𝑥)𝑦 ′ + 𝑛𝑦 = 0, (22)

or in Sturm–Liouville form,

−(𝑥𝑎+1𝑒−𝑥𝑦 ′) ′ = 𝑛𝑥𝑎𝑒−𝑥𝑦

All three of these have polynomial eigenfunctions. The
Legendre polynomials are covered below, the other two in
IBQantum Mechanics.

3 PDEs on bounded domains

3.1 Derivation of some physically-significant
PDEs

Wave equation Suppose we have a uniform inelastic
string of mass density 𝜇, fixed at two endpoints and with a
constant horizontal tension𝑇 through it (the horizontal ten-
sion needs to be constant because of the inelasticity). Write
the displacement of the string from straight as 𝑦, assumed
small. We also assume that the string only moves vertically,
and consider a chunk of string of length 𝛿𝑥 .

𝑥 𝑥 + 𝛿𝑥

𝜃1

𝜃2

𝑇1

𝑇2

Resolving forces horizontally, we find

𝑇1 cos𝜃1 = 𝑇2 cos𝜃2 = 𝑇, (23)

𝜃 being the angle of the string to the horizontal. Applying
𝐹 =𝑚𝑎 vertically and using (23), we have

𝜇𝛿𝑥
𝜕2𝑦

𝜕𝑡2
= 𝑇2 sin𝜃2 −𝑇1 sin𝜃1
= 𝑇 tan𝜃2 −𝑇 tan𝜃2

= 𝑇
( 𝜕𝑦
𝜕𝑥

(𝑥 + 𝛿𝑥, 𝑡) − 𝜕𝑦

𝜕𝑥
(𝑥, 𝑡)

)
Now dividing by 𝜇𝛿𝑥 and taking the limit as 𝛿𝑥 → 0, we
obtain by definition

𝜕2𝑦

𝜕𝑡2
=
𝑇

𝜇

𝜕2𝑦

𝜕𝑥2
,

the wave equation. We usually set 𝑇 /𝜇 = 𝑐2, and write
𝜕𝑢/𝜕𝑣 = 𝑢𝑣, and then this equation is written

𝑦𝑡𝑡 = 𝑐
2𝑦𝑥𝑥 (24)

4It turns out that the trigonometric functions are very closely related to solutions to Bessel’s equation: put 𝑦 = 𝑥−1/2𝑢 and the equation becomes
−𝑢′′ = (1 + (𝑛2 − 1/4)/𝑥2)𝑢, and then if 𝑛 = 1/2 this is the SHM equation.
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Diffusion equation To derive the diffusion equation, we
combine two principles, “stuff wants to be where there is
less of it”, and “stuff is conserved”. Let 𝜃 be the quantity
of interest, J the flux. The first of these, called variously
Fick’s law (for diffusion), Fourier’s law (for heat), or Ohm’s
law (for electricity), says more concretely that flux is pro-
portional to the negative of the gradient of the concentration:

J = −𝑘∇𝜃 .

(We have been quite vague because this principle applies
in the same form to many different systems, as seen by the
number of names it has).
The second principle, conservation of stuff, says that the

concentration in a region increases when stuff flows in. In
particular,

ˆ
𝑉

𝜕𝜃

𝜕𝑡
𝑑𝑡 ∝ −

ˆ
𝜕𝑉

J · n𝑑𝑆 = −
ˆ
𝑉
∇ · J𝑑𝑉 :

since both of these integrands are the same and the volume
is arbitrary, we conclude that

𝜕𝜃

𝜕𝑡
= −𝜇∇ · J,

“local” conservation of stuff. Combining this with the other
equation, we obtain

𝜕𝜃

𝜕𝑡
= ∇ · (𝐷∇𝜃 )

for some function 𝐷 , the diffusion coefficient. If 𝐷 is con-
stant and we are in one dimension, we get the diffusion
equation that we study in this course:

𝜕𝜃

𝜕𝑡
= 𝐷

𝜕2𝜃

𝜕𝑥2
. (25)

Laplace’s equation Laplace’s equation can be thought of
as the steady-state version of the diffusion equation, al-
though it also occurs in a number of other static systems,
such as Maxwell’s equations in a vacuum with no charges.

∇2𝑢 = 0. (26)

3.2 Separation of variables

Thanks to uniqueness theorems for solutions of differen-
tial equations, how we find a solution does not matter: if it
satisfies the equation and its boundary conditions, it is the
solution.
The following method is one way of finding a solution,

by reducing the PDE to a number of ODEs by hypothesising
that it is a (sum of) product(s) of functions of one variable.
It uses the idea that if a function of one variable is equal to a
function of a different, independent variable, both must be
constant. The general procedure is:

1. Choose a coordinate system (Cartesian, polar, spher-
ical, …) so tha the boundary conditions are nice
curves (𝑥 constant, or 𝑟 constant, for example).

2. Write the function as a product of functions of each
separate variable, and rearrange to obtain terms that
are functions of only one variable.

3. Put each variable’s term equal to a constant.

4. Find the eigenvalues and eigenfunctions of the equa-
tions separately, one by one, until all the variables’
functions are determined. (Generally you want to
solve the ones with bounded domains and/or homo-
geneous boundary conditions first, because they are
easier and will have only a discrete set of solutions.
The last constant is determined by the others.)

5. Multiply the compatible functions together, discard-
ing any unimportant multiplicative constants.

6. Form a(n infinite) sum of the possible functions thus
obtained, with arbitrary coefficients.

7. Use the other boundary conditions to determine the
coefficients in this series.

Generally, time is a good separating variable if the re-
gion is static. Only a few co-ordinate systems allow us to
separate variables, of which the ones we care about in this
course are Cartesians, polars, sphericals and cylindricals, all
of which.

3.3 Spherical coordinates: Legendre’s equation

Separating variables, 𝑢 = 𝑅(𝑟 )Θ(𝜃 )Φ(𝜙),

0 =
1
𝑟 2

(
(𝑟 2𝑅′) ′
𝑅

+ 1

sin2 𝜃

(
sin𝜃 ((sin𝜃 )Θ′) ′

Θ
+ Φ′′

Φ

))
.

The first term is a function of 𝑅, the second of 𝜃, 𝜙 , so we
must have

(𝑟 2𝑅′) ′ = 𝑛(𝑛 + 1)𝑟 2𝑅
This is a homogeneous equation, solved by 𝑟𝑛 and 𝑟−𝑛−1.
Likewise, the second term is a constant, but the bracket is
the sum of a function of 𝜃 and a function of 𝜙 , so we obtain

Φ′′ = −𝑚2Φ

−(sin𝜃 )((sin𝜃 )Θ′) ′ +𝑚2Θ = 𝜆(sin𝜃 )2Θ

Since Φmust be periodic,𝑚 is an integer, and we have solu-
tions 𝑒±𝑚𝑖𝜙 .
The equation for Θ does not in general have element-

ary solutions. Putting cos𝜃 = 𝑥 (so 𝑥 ∈ [−1, 1]) and
𝑦 = Θ(arccos𝑥), it becomes

− ((1 − 𝑥2)𝑦 ′) ′ + 𝑚2

1 − 𝑥2𝑦 = 𝑛(𝑛 + 1)𝑦, (27)

the associated Legendre equation. In this course, we only
care about axisymmetric solutions, that is, those with𝑚 =
0; in fact, the solutions for other 𝑚 can be derived from
these. The simpler equation

− ((1 − 𝑥2)𝑦 ′) ′ = 𝑛(𝑛 + 1)𝑦, (28)

is called the Legendre equation.
A Frobenius expansion reveals that to be finite at ±1, we

need 𝑛 to be an integer as well, and the solution will then
be a polynomial of degree 𝑛. These are denoted by 𝑃𝑛 , with
the normalisation 𝑃𝑛 (1) = 1. The Legendre equation is a
Sturm–Liouville equation with weight 1, so the 𝑃𝑛 are or-
thogonal polynomials on [−1, 1].
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3.4 Cylindrical coordinates: Bessel’s equation

Separating variables, 𝑢 = 𝑅(𝑟 )Φ(𝜙)𝑍 (𝑧), so

1
𝑟 2

(
𝑟 (𝑟𝑅′) ′
𝑅

+ Φ′′

Φ

)
+ 𝑍

′′

𝑍
= 0

As before, we obtain three equations, namely

𝑍 ′′ = 𝜆2𝑍

Φ′′ = −𝑚2Φ

(𝑟𝑅′) ′ + 𝜆2𝑟𝑅 − 𝑚
2

𝑟
𝑅 = 0.

Φ is periodic, so𝑚 is an integer. 𝜆 is not constrained, and
can be eliminated from the last equation by putting 𝜆𝑟 = 𝑥 .
We obtain Bessel’s equation, which is usually written as

𝑟 2𝑅′′ + 𝑟𝑅′ + (𝑟 2 −𝑚2)𝑅 = 0. (29)

Bessel’s equation is not solved by a elementary function
unless 𝑚 is a half-integer. The rest of the time, it has two
independent solutions which are new functions. The one
regular at the origin is 𝐽𝑚 (𝑥), sometimes called the Bessel
function of the first kind which, by the method of Frobenius,
is given by the series

∞∑
𝑛=0

(−1)𝑘
𝑘!Γ(𝑚 + 𝑘 + 1)

(𝑥
2

)𝑚+2𝑘
; (30)

this series remains valid even if𝑚 is not an integer.
The linearly independent solution is singular at 0: for

non-integer𝑚, we could take 𝐽−𝑚 as an independent solu-
tion, but for integer𝑚, 𝐽±𝑚 are actually proportional, so in-
stead we have to use 𝑌𝑚 , the Bessel function of the second
kind, given by

𝑌𝑚 = 𝐽𝑚 cot𝑚𝜋 − 𝐽−𝑚 csc𝑚𝜋

when𝑚 is not an integer, and the limit of this when𝑚 is an
integer.
Once again Bessel’s equation is a Sturm–Liouville equa-

tion. This implies that the solutions with different 𝜆 are
orthogonal with weight 𝑥 :

ˆ 1

0
𝐽𝑚 ( 𝑗𝑚,𝑘𝑥) 𝐽𝑚 ( 𝑗𝑚,𝑙𝑥)𝑥 𝑑𝑥 = 0

where 𝑗𝑚,𝑘 is the 𝑘th zero of 𝐽𝑚 .

3.5 Examples

Wave equation with no boundary conditions

𝑢𝑡𝑡 = 𝑐
2𝑢𝑥𝑥

Suppose that 𝑢 = 𝑇 (𝑡)𝑋 (𝑥). Then

𝑇 ′′

𝑇
= 𝑐2

𝑋 ′′

𝑋

These are functions of different variables, so they are both
constant. Put 𝑋 ′′ = −𝑘2𝑋 , and we have solution 𝑋 =
𝐴𝑒𝑖𝑘𝑥 + 𝐵𝑒−𝑖𝑘𝑥 ). Then 𝑇 ′′ = −𝑐2𝑘2𝑇 , so 𝑇 = 𝐶𝑒𝑖𝑘𝑐𝑡 + 𝐷𝑒𝑖𝑘𝑐𝑡 .
Therefore any solution to the wave equation can be written
as a sum of plane waves: functions of the form 𝑒𝑖𝑘 (±𝑥±𝑐𝑡 ) ,
where each ± is independent.

Laplace’s equation in a rectangle Consider the system

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 0 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑏

𝑢 (0, 𝑦) = 𝑢 (𝑎,𝑦) = 0

𝑢 (𝑥, 0) = 𝑓 (𝑥)
𝑢 (𝑥, 𝑏) = 𝑔(𝑥)

Separating variables as 𝑢 = 𝑋 (𝑥)𝑌 (𝑦) gives

𝑋 ′′

𝑋
+ 𝑌

′′

𝑌
= 0.

Each term is a function of different variables, so they must
both be constant. Noting that 𝑋 has to vanish at 𝑥 = 0 and
𝑥 = 𝑎, we choose the constant so that

𝑋 ′′ = −𝑘2𝑋,

which has solutions 𝑋 = sin(𝑘𝑥), where 𝑘 is a multiple of
𝜋/𝑎, i.e. the eigenfunctions are 𝑋 = sin(𝑛𝜋𝑥/𝑎) (if 𝑘 = 0,
we get 𝑋 = 𝐴𝑥 + 𝐵, which only satisfies both boundary
conditions if 𝐴 = 𝐵 = 0, so we do ignore this term).
Then we have

𝑌 ′′ = −(𝑛𝜋/𝑎)2𝑌 .

There are various options for what the sensible form of solu-
tion is to write down here. Sincewe need tomatch two non-
trivial boundary conditions, it is advantageous to choose
the functions so that each vanishes on one boundary, and
is 1 on the opposite one. Thankfully this is possible: since
sinh𝑘𝑦 and sinh𝑘 (𝑏 − 𝑦) are linearly independent, we can
take

𝑌 = 𝐴
sinh(𝑛𝜋𝑦/𝑎)
sinh(𝑛𝜋𝑏/𝑎) + 𝐵

sinh(𝑛𝜋 (𝑏 − 𝑦)/𝑎)
sinh(𝑛𝜋𝑏/𝑎)

Therefore in general the solution is of the form

𝑢 (𝑥,𝑦) =
∞∑
𝑛=1

(
𝐴𝑛 sinh(𝑛𝜋𝑦/𝑎)+𝐵𝑛 sinh(𝑛𝜋 (𝑏−𝑦)/𝑎)

) sin(𝑛𝜋𝑥/𝑎)
sinh(𝑛𝜋𝑏/𝑎)

Putting 𝑦 = 0, 𝑏 gives

𝑓 (𝑥) = 𝑢 (𝑥, 0) =
∞∑
𝑛=1

𝐵𝑛 sin(𝑛𝜋𝑥/𝑎)

𝑔(𝑥) = 𝑢 (𝑥, 𝑏) =
∞∑
𝑛=1

𝐴𝑛 sin(𝑛𝜋𝑥/𝑎),

and we then find the coefficients using the orthogonality of
the expansions: we have

𝐵𝑛 =
2
𝑎

ˆ 𝑎

0
𝑓 (𝑥) sin(𝑛𝜋𝑥/𝑎) 𝑑𝑥

𝐴𝑛 =
2
𝑎

ˆ 𝑎

0
𝑔(𝑥) sin(𝑛𝜋𝑥/𝑎) 𝑑𝑥.
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4 Inhomogeneous ODEs: Green’s
functions

4.1 The delta function

As in IA DiffeRential Eations, we define an object 𝛿
that we pretend is a function, so that for any continuous
function 𝑓 , ˆ ∞

−∞
𝑓 (𝑥)𝛿 (𝑥) 𝑑𝑥 = 𝑓 (0).

Replacing 𝑓 (𝑥) by 𝑓 (𝑥+𝑎) and shifting the integration vari-
able, ˆ ∞

−∞
𝑓 (𝑥)𝛿 (𝑥 − 𝑎) 𝑑𝑥 = 𝑓 (𝑎).

In fact, since values of 𝑓 away from 𝑎 do not affect the value
of this integral, we have for any 𝜀, 𝜂 > 0

ˆ 𝑎+𝜂

𝑎−𝜀
𝑓 (𝑥)𝛿 (𝑥 − 𝑎) 𝑑𝑥 = 𝑓 (𝑎) .

No function with these properties can actually exist, but
it is a useful mnemonic device for solving differential equa-
tions. The attraction is the following: suppose that we can
solve the equation

𝐿𝑥𝐺 (𝑥 ; 𝜉) = 𝛿 (𝑥 − 𝜉). (31)

with some particular boundary conditions (usually homo-
geneous). Then

𝐿𝑥

ˆ 𝑏

𝑎
𝐺 (𝑥 ; 𝜉) 𝑓 (𝜉) 𝑑𝜉 =

ˆ 𝑏

𝑎
𝐿𝑥𝐺 (𝑥 ; 𝜉) 𝑓 (𝜉) 𝑑𝜉

=
ˆ 𝑏

𝑎
𝛿 (𝑥 − 𝜉) 𝑓 (𝜉) 𝑑𝜉 = 𝑓 (𝑥) :

the response of the equation to an impulsive forcing can be
used to construct the solution to the equationwith a general
forcing.
The function 𝐺 is called the Green’s function5 of the op-

erator 𝐿 with the specified boundary conditions.

4.2 Forced equations with fixed boundaries

We want to solve

𝑃𝑦 ′′ +𝑄𝑦 ′ + 𝑅𝑦 = 𝑓 , (32)

with the boundary conditions 𝑦 (𝑎) = 𝑦 (𝑏) = 0. Provided
that the coefficients are continuous and 𝑃 does not vanish,
the solution will be of the form

ˆ 𝑏

𝑎
𝐺 (𝑥 ; 𝜉) 𝑓 (𝜉) 𝑑𝜉,

where𝐺 solves

𝑃 (𝑥) 𝑑
2

𝑑𝑥2
𝐺 (𝑥 ; 𝜉) +𝑄 (𝑥) 𝑑

𝑑𝑥
𝐺 (𝑥 ; 𝜉) +𝑅(𝑥)𝐺 (𝑥 ; 𝜉) = 𝛿 (𝑥 − 𝜉).

(33)

To solve this equation,
1. Find a nontrivial solution to 𝑃𝐺 ′′+𝑄𝐺 ′+𝑅𝐺 = 0with
𝐺 (𝑎; 𝜉) = 0, call it 𝑦𝑎 , which will be proportional to𝐺
on [𝑎, 𝜉).

2. Find a nontrivial solution to 𝑃𝐺 ′′+𝑄𝐺 ′+𝑅𝐺 = 0with
𝐺 (𝑏; 𝜉) = 0, call it 𝑦𝑏 , which will be proportional to𝐺
on (𝜉, 𝑏].

3. Integrate (33) over a small interval containing 𝜉 . We
find that we need 𝐺 to be continuous at 𝜉 , and the
jump condition [𝑃 𝑑𝐺/𝑑𝑥]𝜉+

𝜉− = 1.

4. For the solutions to match, we therefore require 𝐴, 𝐵
so that

𝐴𝑦𝑏 (𝜉) − 𝐵𝑦𝑎 (𝜉) = 0

𝐴𝑦 ′𝑏 (𝜉) − 𝐵𝑦
′
𝑎 (𝜉) =

1
𝑃 (𝜉) .

Provided that the solutions 𝑦𝑎, 𝑦𝑏 are linearly inde-
pendent, this is enough to specify𝐺 completely.

The solution in general is

𝐺 (𝑥 ; 𝜉) = 1
𝑃 (𝜉)𝑊 (𝑦𝑎, 𝑦𝑏) (𝜉)

{
𝑦𝑏 (𝜉)𝑦𝑎 (𝑥) 𝑎 ⩽ 𝑥 < 𝜉

𝑦𝑎 (𝜉)𝑦𝑏 (𝑥) 𝜉 < 𝑥 ⩽ 𝑏

where𝑊 is the Wronskian, but in practice, it is easier to
solve the equations directly than apply this formula.

4.3 Forced initial value problems

Suppose that 𝑦 = 𝑦 (𝑡), and we want to solve
𝑃 ¥𝑦 +𝑄 ¤𝑦 + 𝑅𝑦 = 𝑓 , (34)

where 𝑦 (0) = 𝑦 ′(0) = 0. Again, we look first at

𝑃 (𝑡) 𝑑
2

𝑑𝑡2
𝐺 (𝑡 ;𝜏)+𝑄 (𝑡) 𝑑

𝑑𝑡
𝐺 (𝑡 ;𝜏)+𝑅(𝑡)𝐺 (𝑡 ;𝜏) = 𝛿 (𝑡−𝜏), (35)

but since the initial condition is 𝐺 (0;𝜏) = ¤𝐺 (0;𝜏) = 0, the
solution for 𝑡 < 𝜏 is automatically 0. Therefore we only
need to solve

𝑃 ¥𝑦 +𝑄 ¤𝑦 + 𝑅𝑦 = 0

for 𝑡 > 𝜏 , and integrating over 𝜏 implies that 𝐺 is continu-
ous there and [ ¤𝐺]𝜏+𝜏− = 1/𝑃 (𝜏), so we need to impose the
initial conditions

𝑦 (𝜏) = 0

¤𝑦 (𝜏) = 1/𝑃 (𝜏).

4.4 Eigenfunction expansions

What if the equation is a Sturm–Liouville equation? Since
the Green’s function is continuous and differentiable most
of the time, we would expect it to have an eigenfunction
expansion.
To be concrete, suppose we want to solve

− (𝑝𝑦 ′) ′ − 𝜆̃𝑤𝑦 = 𝑤𝑓 , (36)

where 𝜆̃ is not an eigenvalue, and𝑦 (𝑎) = 𝑦 (𝑏) = 0. Expand-
ing 𝑦 =

∑∞
𝑛=1 𝑎𝑛𝑢𝑛 , since

−(𝑝𝑢 ′𝑛) ′ − 𝜆̃𝑤𝑢𝑛 = (𝜆𝑛 − 𝜆̃)𝑤𝑢𝑛,
5The non-grammatical usage is standard: somehow, ‘Green function’ sounds silly.
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we find using linearity that

𝑤𝑓 = −(𝑝𝑦 ′) ′ − 𝜆̃𝑤𝑦 =
∞∑
𝑛=1

(𝜆𝑛 − 𝜆̃)𝑎𝑛𝑤𝑢𝑛 .

Multiplying by 𝑢𝑚 and integrating, orthogonality implies
that

𝑎𝑛 =
1

𝜆𝑛 − 𝜆̃
〈𝑢𝑛, 𝑓 〉
〈𝑢𝑛, 𝑢𝑛〉

,

where again 〈𝑢, 𝑣〉 =
´ 𝑏
𝑎 𝑢 (𝑥)𝑣 (𝑥)𝑤 (𝑥) 𝑑𝑥 . Therefore,

𝑦 (𝑥) =
∞∑
𝑛=1

𝑢𝑛 (𝑥)
𝜆𝑛 − 𝜆̃

〈𝑢𝑛, 𝑓 〉
〈𝑢𝑛, 𝑢𝑛〉

=
ˆ 𝑏

𝑎

( ∞∑
𝑛=1

𝑢𝑛 (𝑥)𝑢𝑛 (𝜉)𝑤 (𝜉)
𝜆𝑛 − 𝜆̃

)
𝑓 (𝜉) 𝑑𝜉,

so we can make the identification

𝐺 (𝑥 ; 𝜉) = 𝑤 (𝜉)
∞∑
𝑛=1

𝑢𝑛 (𝑥)𝑢𝑛 (𝜉)
(𝜆𝑛 − 𝜆̃)〈𝑢𝑛, 𝑢𝑛〉

(whether to include the weight function or not depends on
convention).

5 Fourier transforms

5.1 Derivation, definitions and properties

Derivation Consider the complex Fourier series of a func-
tion over the period [−𝐿/2, 𝐿/2]. We have

𝑓 (𝑥) =
∑
𝑛∈Z

𝑒2𝜋𝑖𝑛𝑥/𝐿

𝐿

ˆ 𝐿/2

−𝐿/2
𝑓 (𝑦)𝑒−2𝜋𝑖𝑛𝑦/𝐿 𝑑𝑦.

Writing 𝑘 = 2𝜋𝑛/𝐿, this becomes

𝑓 (𝑥) = 1
2𝜋

∑
𝑘∈2𝜋Z/𝐿

2𝜋
𝐿
𝑒𝑖𝑘𝑥
ˆ 𝐿/2

−𝐿/2
𝑓 (𝑦)𝑒−𝑖𝑘𝑦 𝑑𝑦.

This looks like a Riemann sum, albeit somehow for an im-
proper integral, and taking the limit as 𝐿 → ∞ in a rather
casual way,

𝑓 (𝑥) = 1
2𝜋

ˆ ∞

−∞
𝑒𝑖𝑘𝑥

( ˆ ∞

−∞
𝑓 (𝑦)𝑒−𝑖𝑘𝑦 𝑑𝑦

)
𝑑𝑘.

Hence we obtain the transform pair

𝑓 (𝑘) =
ˆ ∞

−∞
𝑓 (𝑥)𝑒−𝑖𝑘𝑥 𝑑𝑥 (37)

𝑓 (𝑥) = 1
2𝜋

ˆ ∞

−∞
𝑓 (𝑘)𝑒𝑖𝑘𝑥 𝑑𝑥 ; (38)

and 𝑓 is called the Fourier transform of 𝑓 .6 The Fourier
transform of 𝑓 is also denoted by F (𝑓 ).

Linearity If 𝜆, 𝜇 are constants,�𝜆𝑓 + 𝜇𝑔(𝑘) = 𝜆𝑓 (𝑘) + 𝜇𝑔(𝑘) (39)

Variable shift �𝑓 (· − 𝑎) (𝑘) = 𝑒𝑖𝑘𝑎 𝑓 (𝑘) (40)

Derivatives
𝑓 ′(𝑘) = −𝑖𝑘 𝑓 (𝑘) (41)

Multiplication by 𝑥�𝑥 𝑓 (𝑥) (𝑘) = −𝑖 (𝑓 ) ′(𝑘) (42)

Parseval/Plancherelˆ ∞

−∞
𝑓 (𝑥)𝑔(𝑥) 𝑑𝑥 =

1
2𝜋

ˆ ∞

−∞
𝑓 (𝑘) (̃𝑔) (𝑘) 𝑑𝑘 (43)

ˆ ∞

−∞
|𝑓 (𝑥) |2 𝑑𝑥 =

1
2𝜋

ˆ ∞

−∞
|𝑓 (𝑘) |2 𝑑𝑘 (44)

Since F −1 = (2𝜋)−1F ◦ S, where S is the operation that
sends 𝑓 (𝑥) → 𝑓 (−𝑥), the inverse transform has corres-
ponding identities. We do not list them all here, as they
ar readily available elsewhere.
One final note: if a function is discontinuous (and the dis-

continuity is not removable), its Fourier transform will not
be integrable (it usually decays too slowly). A workaround
when taking the inverse transform is to use the principal
value:

𝑓 (𝑥) = lim
𝑀→∞

ˆ 𝑀

−𝑀
𝑓 (𝑘)𝑒𝑖𝑘𝑥 𝑑𝑥.

(Clearly this will give the same answer as an ordinary in-
tegral for integrable 𝑓 (𝑘), but it also works for some other
𝑓 (𝑘).)

5.2 Convolution

The convolution of two functions 𝑓 , 𝑔 : R⇒ R is defined by

(𝑓 ★𝑔)(𝑥) =
ˆ ∞

−∞
𝑓 (𝑦)𝑔(𝑥 − 𝑦) 𝑑𝑦. (45)

This has various simple properties:

Symmetric/commutative

(𝑓 ★𝑔)(𝑥) = (𝑔 ★ 𝑓 )(𝑥) (46)

Associative (
(𝑓 ★𝑔) ★ℎ

)
(𝑥) =

(
𝑓 ★ (𝑔 ★ℎ)

)
(𝑥) (47)

Bilinear If 𝜆, 𝜇 are constants,(
(𝜆𝑓 + 𝜇𝑔) ★ℎ

)
(𝑥) = 𝜆(𝑓 ★ℎ) (𝑥) + 𝜇 (𝑔 ★ℎ) (𝑥) (48)(

𝑓 ★ (𝜆𝑔 + 𝜇ℎ)
)
(𝑥) = 𝜆(𝑓 ★𝑔)(𝑥) + 𝜇 (𝑓 ★ℎ) (𝑥) (49)

It is easy to show each of the above properties by chan-
ging variables.

Translation Writing 𝜏𝑎 𝑓 (𝑥) = 𝑓 (𝑥 − 𝑎) etc, we have(
𝜏𝑎 (𝑓 ★𝑔)

)
(𝑥) =

(
(𝜏𝑎 𝑓 ) ★𝑔)

)
(𝑥) =

(
𝑓 ★ (𝜏𝑎𝑔)

)
(𝑥)

6There are various conventions in use for where to put the minus sign and the 2𝜋 in this formula. See my Fourier Transform handout for details.
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Derivatives Due to the translation property, the derivat-
ive also has a simple relationship with convolution:

(𝑓 ★𝑔) ′(𝑥) = (𝑓 ′ ★𝑔)(𝑥) = (𝑓 ★𝑔′) (𝑥) (50)

“Identity” The delta function acts like an identity for con-
volution, although it is not actually a function:

(𝑓 ★ 𝛿) (𝑥) = (𝛿 ★ 𝑓 ) (𝑥) = 𝑓 (𝑥)

Convolution theorem The Fourier transform inter-
changes convolution and multiplication:�(𝑓 ★𝑔)(𝑘) = 𝑓 (𝑘) · 𝑔(𝑘) (51)�(𝑓 · 𝑔)(𝑘) = 1

2𝜋
(𝑓 ★𝑔) (𝑘) (52)

Notice the 1/2𝜋 in the second! This comes from the inverse
Fourier transform’s 1/2𝜋 .

5.3 Discrete Fourier transform

There is also a Fourier transform on finite sets: we have

1
𝑁

𝑁−1∑
𝑛=0

𝑒2𝜋𝑖𝑛𝜔/𝑁 𝑒−2𝜋𝑖𝑚𝜔/𝑁 = 𝛿𝑚𝑛,

which allows us to give a discrete Fourier transform, almost
universally known as the DFT, which sends a function on
{0, 1, . . . , 𝑁 − 1} to another function on {0, 1, . . . , 𝑁 − 1}:

𝑓 (𝜔) =
𝑁−1∑
𝑛=0

𝑓 (𝑛)𝑒−2𝜋𝑖𝑛𝜔/𝑁 ,

with inverse

𝑓 (𝑛) = 1
𝑁

𝑁−1∑
𝜔=0

𝑓 (𝜔)𝑒2𝜋𝑖𝑛𝜔/𝑁 .

(As with the normal Fourier transform, the position of the
normalisation constant 𝑁 and the sign of the exponential
can be chosen in different ways, although there is less vari-
ation here than in the continuum case.)
The DFT has the same shift, convolution and Par-

seval/Plancherel properties as the continuous Fourier trans-
form, although we do not record them here.

5.4 Applications

Solving constant-coefficient ODEs The Fourier trans-
form of a linear constant-coefficient differential operator 𝐿
acting on 𝑦 is 𝑝 (𝑘)𝑦 (𝑘) for some polynomial 𝑝 , so if 𝐿𝑦 = 𝑓 ,
we have 𝑦 (𝑘) = 𝑓 (𝑘)/𝑝 (𝑘). We then apply the inverse
transform to this to obtain 𝑦 as a convolution.
In subjects such as electrical engineering, constant-

coefficient ODEs are sufficiently prevalent that the object
𝑅(𝑘) = 1/𝑝 (𝑘) has its own name: it is called the transfer
function.
Two important remarks:

• The Fourier transform by itself does not have a built-
in way to insert boundary conditions. If there are
boundary conditions, they must be satisfied by find-
ing the complementary function separately.7

• There are functions with the same Fourier transform:
for example,

1
−𝑎 + 𝑖𝑘 =

ˆ ∞

−∞
𝑒−𝑖𝑘𝑥𝑒𝑎𝑥𝐻 (𝑥) 𝑑𝑥

=
ˆ ∞

−∞
𝑒−𝑖𝑘𝑥 (−𝑒𝑎𝑥𝐻 (−𝑥)) 𝑑𝑥,

and you should choose the appropriate inverse based
on either what you know about the value of 𝑎 so
that the integral converges, or appeal to causality: if
we expect the solution to only be influenced by past
events, the convolution integral should stop at 𝑡 .

Solving constant-coefficient PDEs TheFourier transform
often allows us to turn a PDE, which is generally difficult
to solve, into an easier ODE. We will give examples of this
later.

N.B. When the coefficients are not constant, the Fourier
transform is far less useful: its main power comes from
turning the translation symmetry (and hence derivatives)
into simple multiplication. (This doesn’t mean that it is use-
less, but it usually no longer solves problems instantly.)

6 PDEs on unbounded domains

6.1 Classification

Aswe have seenwith the wave equation, diffusion equation
and Laplace’s equation, the signs of the second-order terms
in a linear partial differential equation have a significant ef-
fect on what the solution looks like (the lower-order terms
are most of the time considerably less significant). The gen-
eric second-order linear PDE can be written as

𝑎11𝑢𝑥𝑥 + 2𝑎12𝑢𝑥𝑦 + 𝑎22𝑢𝑦𝑦 + 𝑏1𝑢𝑥 + 𝑏2𝑢𝑦 + 𝑐𝑢 + 𝑑 = 0,

where 𝑢 and all of the coefficients are functions of 𝑥 and
𝑦. The appropriate classification turns out to depend on the
determinant of the quadratic form 𝑎11𝛼

2 + 2𝑎12𝛼𝛽 + 𝑎22𝛽2,
i.e.

Δ(𝑥,𝑦) B 𝑎11𝑎22 − 𝑎212.
We classify equations based on the sign of this quadratic
form: an equation is

Elliptic if Δ > 0 (e.g. Laplace’s equation)

Hyperbolic if Δ < 0 (e.g. the wave equation)

Parabolic if Δ = 0 (e.g. the diffusion equation)

It turns out that this classification is, in broad terms, suf-
ficiently granular: every second-order partial differential
equation behaves like one of the Laplace’s equation, the dif-
fusion equation or the wave equation.

7The Laplace Transform 𝑓 (𝑥) ↦→
´∞
0 𝑓 (𝑥)𝑒−𝑠𝑥 𝑑𝑥 will be introduced in Complex Methods to tackle problems with initial conditions.
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N.B. Since Δ is a function of the variables, it can change
sign: an equation can have different classification in differ-
ent regions.

6.2 Well-posedness

A differential equation is well-posed if the solutions are
well-behaved in a particular way, namely

• The solution exists and is uniquely determined in the
whole domain of interest (this essentially requires
having “the right sort” of boundary data).

• A small change in the boundary data causes only
small changes in the solution (for eigenfunction ex-
pansions, this usually amounts to needing the larger-
eigenvalue contributions to not grow faster than
the others as we move away from the boundary
data, since it is the higher-eigenvalue functions that
change most when the boundary data is perturbed
locally).8

6.3 The method of characteristics

Thebig idea of thismethod is to choose a new set of coordin-
ates, in which the equation is very simple. It will often turn
out that the value of the solution at a point only depends
on one point of the boundary data, and that point is the one
that lies on the same line in a family of characteristic lines.

6.3.1 Characteristics for first-order equations

Consider the general equation

𝑎𝑢𝑥 + 𝑏𝑢𝑦 + 𝑐𝑢 + 𝑑 = 0,

where again 𝑎, 𝑏, 𝑐, 𝑑 are functions of 𝑢, and suppose that
the equation has a boundary condition 𝑢 = 𝑓 on the curve
𝑔(𝑥,𝑦) = 0. We want to find a coordinate 𝑠 so that the equa-
tion becomes

𝑢𝑠 + 𝑐𝑢 + 𝑑 = 0,

and a coordinate 𝑡 that parametrises the boundary data, so
that (𝑥,𝑦) ↦→ (𝑠, 𝑡) is a valid change of coordinates. If we
can do that, the equation is easy to solve, since it is just an
ODE in 𝑠 that depends on 𝑡 parametrically.
The method works as follows:

1. Write down the characteristic equations: we want

𝑎𝑢𝑥 + 𝑏𝑢𝑦 = 𝑈𝑠 =
𝜕𝑥

𝜕𝑠
𝑈𝑥 +

𝜕𝑦

𝜕𝑠
𝑈𝑦,

so we need
𝜕𝑥

𝜕𝑠
= 𝑎

𝜕𝑦

𝜕𝑠
= 𝑏. (53)

2. Solve the characteristic equations for 𝑥,𝑦 as functions
of 𝑠 , to obtain the characteristics.

3. Parametrise the boundary curve 𝑔(𝑥,𝑦) = 0 by 𝑥 =
𝑥0 (𝑡), 𝑦 = 𝑦0 (𝑡).

4. Provided that 𝑔(𝑥,𝑦) = 0 crosses each characteristic
exactly once and is never tangent to a characteristic,
(𝑥,𝑦) is determined uniquely by (𝑠, 𝑡) (go along the
boundary until you get to the characteristic through
that point, then go along that characteristic, read off
the 𝑡 and the 𝑠), the change of coordinates is a bijec-
tion so we can invert it and write the original equa-
tion as

𝑈𝑠 +𝐶 (𝑠, 𝑡)𝑈 + 𝐷 (𝑠, 𝑡) = 0, (54)

and solve this for𝑈 (𝑠, 𝑡);

5. Finally, at each point, the initial condition is given by
𝑈 (0, 𝑡) = 𝑓 (𝑥0 (𝑡), 𝑦0 (𝑡)) = 𝐹 (𝑡).

Notice that the solution to the equation is determined in
the region formed by all the characteristics that cross the
initial data curve once: even if we can’t finish the rest of
the calculation, as we may not be able to if the equation is
sufficiently nasty, we can at least say where a solution is
determined.

6.3.2 Characteristics for second-order equations

Here, our goal differs depending on the type of PDE we
are dealing with. It is quite simple to show that a legit-
imate change of coordinates does not change the sign of
the determinant function Δ (just do it!), so the classification
is stable under changing coordinates. The idea now is to
choose coordinates to make the equation take a canonical
form close to that of one of the three archetypal equations
we have already considered, so that the second-order terms
are 𝑢𝜉𝜉 + 𝑢𝜂𝜂 for elliptic equations, 𝑢𝜉𝜉 for parabolic equa-
tions, and 𝑢𝜉𝜂 for hyperbolic equations. Where do we find
the coordinates to write down these new equations? By
solving first-order characteristic equations.
Characteristics can be found by considering eigenvalues

of the quadratic form. The following diagrams illustrate
each basic case; they all show

an arbitrary point 𝑃
the boundary/initial lines
the characteristics through 𝑃
the points that affect 𝑃
the points that 𝑃 affects

Elliptic There are no real eigenvalues, and so no charac-
teristics (there is no “propagation”: one condition must be
specified on the entire boundary, e.g. the value of the func-
tion, or its derivative).

8This is a manifestation of the rule of thumb that bulk properties like mass and energy tend to mostly accounted for in the first few eigenfunctions, while
the larger-eigenvalue ones are more for taking into account the specific local variations.
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Parabolic There is one real eigenvalue, and so one charac-
teristic through a point, along which the propagation speed
is infinite. The “time direction” is the vector perpendicular
to this. We need one initial condition, and one condition on
the boundary. Information moves infinitely fast, and there
is a smoothing effect. The direction of time is visible (back-
ward diffusion is ill-posed since the reverse of smoothing is
“roughening”).

Hyperbolic There are two real eigenvalues, so two char-
acteristics through each point. Information from the
boundary propagates in two directions, but at finite speed:
a point is influenced by the data given on the boundary
between the two intersection points of the characteristics.
One condition on the boundary and two initial conditions
must be specified.

The wave equation is same under time-reversal, so for-
ward and backward solutions “look the same” (apart from
the boundary conditions’ influence). “Time” is relative: you
can determine if one point is “before” another, but there
need not be a “global” time.

Canonical form of the hyperbolic equation This type is
where the characteristics are most significant.
Let𝑈 (𝜉 (𝑥,𝑦), 𝜂 (𝑥,𝑦)) = 𝑢 (𝑥,𝑦). Then

𝑢𝑥𝑥 = (𝜉𝑥𝑈𝜉 + 𝜂𝑥𝑈𝜂)𝑥
= 𝜉2𝑥𝑈𝜉𝜉 + 2𝜉𝑥𝜂𝑥𝑈𝜉𝜂 + 𝜂2𝑥𝑈𝜂𝜂 + 𝜉𝑥𝑥𝑈𝜉 + 𝜂𝑥𝑥𝑈𝜂,

and so on, so

𝑎11𝑢𝑥𝑥 + 2𝑎12𝑢𝑥𝑦 + 𝑎22𝑢𝑦𝑦
= (𝑎11𝜉2𝑥 + 2𝑎12𝜉𝑥𝜉𝑦 + 𝑎22𝜉2𝑦)𝑈𝜉𝜉
+ 2(𝑎11𝜉𝑥𝜂𝑥 + 𝑎12 (𝜉𝑦𝜂𝑥 + 𝜉𝑥𝜂𝑦) + 𝑎22𝜉𝑦𝜂𝑦)𝑈𝜉𝜂
+ (𝑎11𝜂2𝑥 + 2𝑎12𝜂𝑥𝜂𝑦 + 𝑎22𝜂2𝑦)𝑈𝜂𝜂
+ (𝑎11𝜉𝑥𝑥 + 2𝑎12𝜉𝑥𝑦 + 𝑎22𝜉𝑦𝑦)𝑈𝜉
+ (𝑎11𝜂𝑥𝑥 + 2𝑎12𝜂𝑥𝑦 + 𝑎22𝜂𝑦𝑦)𝑈𝜂 .

Therefore we need both 𝜉 and 𝜂 to satisfy the equation

𝑎11𝑣
2
𝑥 + 2𝑎12𝑣𝑥𝑣𝑦 + 𝑎22𝑣2𝑦 = 0,

i.e.
𝑣𝑥
𝑣𝑦

=
−𝑎12 ±

√
−Δ

𝑎11
= 𝜆± .

But on the curve 𝜉 = const, we have 0 = 𝜉𝑥 + (𝑑𝑦/𝑑𝑥)𝜉𝑦 , so
𝑑𝑦/𝑑𝑥 = −𝜉𝑥/𝜉𝑦 . Therefore the characteristics are given by
curves with

𝑑𝑦

𝑑𝑥
= −𝜆±;

solving these gives a simple way of expressing 𝜉 and 𝜂 in
terms of 𝑥 and 𝑦.
The simplest example of this is the wave equation, 𝑢𝑡𝑡 −

𝑐2𝑢𝑥𝑥 = 0. Then we have 𝜆± = ±𝑐 , so the characteristics are
𝑑𝑥

𝑑𝑡
= ∓𝑐,

so the characteristics are 𝑥 ∓ 𝑐𝑡 = const.. In this case, this
allows us to recover the familiar d’Alembert solution as the
sum of a function of 𝑥 − 𝑐𝑡 and a function of 𝑥 + 𝑐𝑡 .

7 Green’s functions for PDEs

7.1 Free Green’s functions

A free Green’s function solves the problem 𝐿𝑢 = 𝛿 (𝑥 − 𝜉)
with no boundary conditions beyond, possibly, decay at
∞. These particular Green’s functions are useful for con-
structing Green’s functions for other problems with other
types of boundary conditions on more complicated do-
mains, which we do below.

Laplace’s equation In three dimensions, we need to solve

∇2𝐺 (x; ξ) = 𝛿 (x − ξ),

with the condition that 𝐺 → 0 as |x| → ∞.9 Integrating
over the ball of radius 𝑟 surrounding ξ, we have

1 =
ˆ
|x−ξ |<𝑟

∇2𝐺 (x; ξ) 𝑑𝑉 =
ˆ
|x−ξ |=𝑟

𝜕𝐺

𝜕𝑟
𝑑𝑆.

9It is worth pointing out that the convention used in this course is not the sensible one: it is generally better to consider −∇2, because it is a positive
operator, and the Green’s function also ends up positive rather than negative.
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We now appeal to the symmetry: since the problem has ro-
tational symmetry about ξ, we assert that𝐺 is only a func-
tion of 𝑟 , and hence this equation becomes

1 = 4𝜋𝑟 2
𝜕𝐺

𝜕𝑟
,

and we find immediately that

𝐺 (x; ξ) = − 1
4𝜋 |x − ξ | . (55)

Suppose we did the same calculation in two dimensions.
Then we find that

𝐺 (x; ξ) = 1
2𝜋

log|x − ξ | : (56)

it is not possible to have a two-dimensional solution that
converges to 0, so this has to do.

Diffusion equation We have

𝐺𝑡 − 𝐷𝐺𝑥𝑥 = 𝛿 (𝑥 − 𝜉)𝛿 (𝑡 − 𝜏).

Taking the Fourier transform in 𝑥 , we find

𝐺̃𝑡 + 𝐷𝑘2𝐺̃ = 𝑒𝑖𝑘𝜉𝛿 (𝑡 − 𝜏)

This is a first-order equation with integrating factor 𝑒𝐷𝑘2𝑡 ,
so

(𝑒𝐷𝑘2𝑡𝐺̃)𝑡 = 𝑒𝑖𝑘𝜉+𝐷𝑘
2𝑡𝛿 (𝑡 − 𝜏),

and the integrating factor on the right resolves to 𝑒𝐷𝑘2𝜏
since the 𝛿 will just take the value at 𝑡 = 𝜏 . Integrating,
we therefore have

𝐺̃ = 𝑒𝑖𝑘𝜉−𝑘
2𝐷 (𝑡−𝜏)𝐻 (𝑡 − 𝜏),

and it remains to invert this. We can write down the inverse
of this transform using the rules for Gaussians (thankfully
the Heaviside function guarantees the coefficient of 𝑘2 is
negative, so the integrals involved all converge), and we
find

𝐺 (𝑥, 𝑡 ; 𝜉 ;𝜏) = 𝐻 (𝑡 − 𝜏) 1√
4𝜋𝐷 (𝑡 − 𝜏)

exp
(
− (𝑥 − 𝜉)2
4𝐷 (𝑡 − 𝜏)

)
(57)

Wave equation We have

𝐺𝑡𝑡 − 𝑐2𝐺𝑥𝑥 = 𝛿 (𝑥 − 𝜉)𝛿 (𝑡 − 𝜏).

Taking the Fourier transform in 𝑥 , we find

𝐺̃𝑡𝑡 + 𝑐2𝑘2𝐺̃ = 𝑒𝑖𝑘𝜉𝛿 (𝑡 − 𝜏)

This is a one-dimensional initial value problem Green’s
function, which we have calculated before: the solution will
be 𝐴 sin(𝑐𝑘 (𝑡 − 𝜏)) for some 𝐴; in particular, we find that
𝑒𝑖𝑘𝜉 = 𝑐𝑘𝐴, so

𝐺̃ = 𝑒𝑖𝑘𝜉
sin 𝑐𝑘 (𝑡 − 𝜏)

𝑐𝑘
𝐻 (𝑡 − 𝜏).

To untransform, notice that the right-hand side is just

1
2𝑐

ˆ 𝑐 (𝑡−𝜏)

−𝑐 (𝑡−𝜏)
𝑒−𝑖𝑘 (𝑥−𝜉) 𝑑𝑥 =

1
2𝑐

ˆ 𝜉+𝑐 (𝑡−𝜏)

𝜉−𝑐 (𝑡−𝜏)
𝑒−𝑖𝑘𝑦 𝑑𝑦,

i.e. the Fourier transform of 𝐻
(
𝑐 (𝑡 − 𝜏) − |𝑥 − 𝜉 |

)
. Hence

𝐺 (𝑥, 𝑡 ; 𝜉, 𝜏) = 1
2𝑐
𝐻 (𝑡 − 𝜏)𝐻

(
𝑐 (𝑡 − 𝜏) − |𝑥 − 𝜉 |

)
.

7.2 Green’s functions for bounded domains

With some adjustments, the free Green’s function can usu-
ally be used to create Green’s functions for more complic-
ated boundary conditions. We shall now do so.

Laplace’s equation Recall Green’s Second Identity: for
any twice-differentiable 𝜙,𝜓 and volume 𝑉 bounded by a
piecewise-differentiable boundary surface, we have

ˆ
𝑉
(𝜙∇2𝜓 −𝜓∇2𝜙)𝑑𝑉 =

ˆ
𝜕𝑉

(
𝜙
𝜕𝜓

𝜕𝜈
−𝜓 𝜕𝜙

𝜕𝜈

)
𝑑𝑆, (58)

where 𝜕/𝜕𝜈 is the derivative in the direction normal to the
surface 𝜕𝑉 .
Choose𝜙 = 𝑢 to solve Laplace’s equation,𝜓 = 𝐺 (·, ξ) any

Green’s function for Laplace’s equation, and𝑉 to be the do-
main𝑈 on which we wish to solve Laplace’s equation, with
a small ball 𝐵(𝜀) of radius 𝜀 around 𝑥 removed. Then both
functions satisfy Laplace’s equation on 𝑉 , so the left-hand
side is 0. Since the small ball is inside 𝑉 , its boundary has
the opposite orientation, so we find that

ˆ
𝜕𝐵 (𝜀)

(
𝑢 (ξ) 𝜕𝐺

𝜕𝜈
(x; ξ) −𝐺 (x; ξ) 𝜕𝑢

𝜕𝜈
(ξ)

)
𝑑𝑆

=
ˆ
𝜕𝑈

(
𝑢 (ξ) 𝜕𝐺

𝜕𝜈
(x; ξ) −𝐺 (x; ξ) 𝜕𝑢

𝜕𝜈
(ξ)

)
𝑑𝑆.

Now, we can expand the left-hand side as a series in 𝜀 to find
the limit as 𝜀 → 0. By the definition of Green’s function,
the first term on the left converges to 𝑢 (x), the second to 0
(since 𝐺 itself is not sufficiently singular to counteract the
area of the sphere converging to 0), and hence we obtain

𝑢 (x) =
ˆ
𝜕𝑈

(
𝑢 (ξ) 𝜕𝐺

𝜕𝜈
(x; ξ) −𝐺 (x; ξ) 𝜕𝑢

𝜕𝜈
(ξ)

)
𝑑𝑆.

This is sometimes called Green’s Third Identity.
We know that Laplace’s equation requires a single

boundary condition, so 𝑢 looks overdetermined in this
equation. To get around this, we can choose how𝐺 behaves
on the boundary to remove the redundancy. In particular,
suppose we know 𝑢 on the boundary (or 𝜕𝑢/𝜕𝜈), and we
have chosen a Green’s function so that 𝜕𝐺/𝜕𝜈 (or 𝐺) van-
ishes on the boundary. Then the formula gives us an ex-
pression for 𝑢 in terms of its values on the boundary. We
call the Green’s function with vanishing normal derivative
𝐺𝐷 (“Dirichlet”) and that which itself vanishes 𝐺𝑁 (“Neu-
mann”), and thus we have the two formulae

𝑢 (x) =
ˆ
𝜕𝑈
𝑢 (ξ) 𝜕𝐺𝐷

𝜕𝜈
(x; ξ) 𝑑𝑆

𝑢 (x) = −
ˆ
𝜕𝐷
𝐺𝑁 (x; ξ)

𝜕𝑢

𝜕𝜈
(ξ) 𝑑𝑆,

where the first is for Dirichlet boundary conditions, the
second for Neumann boundary conditions.
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TheMethod of Images For domains where the boundary
is simply a straight line, there is a straightforward way to
build Dirichlet and Neumann Green’s functions: we place
an extra point on the other side of the boundary, and add or
subtract a copy of the Green’s function based at that point to
cancel out the appropriate part of the original on the bound-
ary: we can think of it as a reflexion of the source in the
boundary. Notice that since the new singularity is outside
the domain, in the domain itself, this new term will satisfy
the original differential equation with no forcing, and so
only affects the boundary value equation, not the defining
one. This works in general for equations where the coeffi-
cients are independent of time (which forces 𝐺 to only de-
pend on |x−ξ |): let 𝑅ξ be the reflexion of the point ξ in the
boundary line. We show that

𝐺𝐷 (x; ξ) = 𝐺 (x; ξ) −𝐺 (x;𝑅ξ) (59)
𝐺𝑁 (x; ξ) = 𝐺 (x; ξ) +𝐺 (x;𝑅ξ). (60)

are suitable Dirichlet and Neumann Green’s functions re-
spectively.
By the assumption we may write 𝐺 (x; ξ) = 𝐹 (|x − ξ |2)

for some 𝐹 , while

|x − ξ |2 + |x − 𝑅ξ |2 = |ξ − 𝑅ξ |2

by Pythagoras’s Theorem, and differentiating gives

𝑑 |x − ξ |2 + 𝑑 |x − 𝑅ξ |2 = 0;

in particular this will hold on the boundary with 𝑑 replaced
by the normal derivative. Thus we find

𝜕𝐺

𝜕𝜈
(x; ξ) = 𝐹 ′(|x − ξ |2) 𝜕

𝜕𝜈
|x − ξ |2

= 𝐹 ′(|x − ξ |2) 𝜕
𝜕𝜈

|x − 𝑅ξ |2

= −𝐹 ′( |x − 𝑅ξ |2) 𝜕
𝜕𝜈

|x − 𝑅ξ |2 = − 𝜕𝐺
𝜕𝜈

(x;𝑅ξ),

where in the last line we have used that on the boundary,
|x − ξ | = |x − 𝑅ξ |.
Therefore (59) and its derivative become

𝐺𝐷 (x; ξ) = 0,

𝜕𝐺𝐷
𝜕𝜈

(x, ξ) = 2
𝜕𝐺

𝜕𝜈
(x; ξ)

while (60) and its derivative become

𝐺𝑁 (x; ξ) = 2𝐺 (x; ξ)
𝜕𝐺𝑁
𝜕𝜈

(x, ξ) = 0.

More complicated domains (e.g. two boundaries at right-
angles) may need more image sources, or images in non-
obvious places, but the principle is the same. Notable ex-
amples are the sphere, where the image point is the geomet-
rical inverse (“reflexion in a sphere”), and periodic bound-
ary conditions, which require adding in an infinite set of
images.10

7.3 Huygens’s principle

Huygens’s principle says that the influence that a point 𝑥
feels from the initial conditions is found by adding up the
influence of each point considered as a source of a particular
strength. For example, if we consider the diffusion equation
𝜃𝑡 = 𝐷𝜃𝑥𝑥 with initial condition 𝜃 (𝑥, 0) = 𝑓 (𝑥), the solution
will be

𝜃 (𝑥, 𝑡) =
ˆ ∞

−∞
𝐺 (𝑥, 𝑡 ; 𝜉, 0) 𝑓 (𝜉) 𝑑𝜉,

where 𝐺 is the diffusion Green’s function we found above.
Proving this is relatively straightforward if we assume that
we can use the Fourier transform:

Diffusion equation with an initial condition Taking the
Fourier transform of 𝜃𝑡 − 𝐷𝜃𝑥𝑥 = 0, we have

𝜃𝑡 + 𝐷𝑘2𝜃 = 0.

The initial condition is 𝜃 (0, 𝑘) = 𝑓 (𝑘). We have then

[𝑒−𝐷𝑘2𝜏𝜃 (𝑘, 𝜏)]𝑡0 = 0,

by using integrating factors, so
˜𝜃 (𝑘, 𝑡) = 𝑒−𝐷𝑘2𝑡 (̃𝑘, 0) = 𝑒−𝐷𝑘2𝑡 𝑓 (𝑘).

Now we simply write down the solution using the Convo-
lution Theorem,

𝜃 (𝑥, 𝑡) =
ˆ ∞

−∞
𝐺 (𝑥, 𝑡 ; 𝜉, 0) 𝑓 (𝜉) 𝑑𝜉,

since the inverse transform of 𝑒−𝐷𝑘2𝑡 is 𝐺 (𝑥, 𝑡 ; 0, 0) and
𝐺 (𝜉 − 𝑥, 𝑡 ; 0, 0) = 𝐺 (𝑥, 𝑡 ; 𝜉, 0).

Wave equation with an initial condition

𝑢𝑡𝑡 − 𝑐2𝑢𝑥𝑥 = 0

𝑢 (𝑥, 0) = 𝑓 (𝑥)
𝑢𝑡 (𝑥, 0) = 𝑔(𝑥)

Something a bit different happens here. Again taking the
Fourier transform,

𝑢̃𝑡𝑡 + 𝑐2𝑘2𝑢̃ = 0,

with 𝑢̃ (𝑘, 0) = 𝑓 (𝑘) and 𝑢̃𝑡 (𝑘, 0) = 𝑔(𝑘). We calculate that

𝑢̃ (𝑘, 𝑡) = 𝑓 (𝑘) cos(𝑐𝑘𝑡) + 𝑔(𝑘) sin(𝑐𝑘𝑡)
𝑐𝑘

.

The second term we recognise as the Fourier transform of
the convolution

´ ∞
−∞𝐺 (𝑥, 𝑡 ; 𝜉, 0)𝑔(𝜉) 𝑑𝜉 . The first is new.

Staring at it, however, we realise that it is the Fourier trans-
form of 1

2 (𝛿 (𝑥 − 𝑐𝑡) + 𝛿 (𝑥 + 𝑐𝑡)). Applying the Convolution
Theorem, we thus find

𝑢 (𝑥, 𝑡) = 1
2

(
𝑓 (𝑥 + 𝑐𝑡) + 𝑓 (𝑥 − 𝑐𝑡)

)
+ 1
2𝑐

ˆ ∞

−∞
𝐺 (𝑥, 𝑡 ; 𝜉, 0)𝑔(𝜉) 𝑑𝜉

=
1
2

(
𝑓 (𝑥 + 𝑐𝑡) + 𝑓 (𝑥 − 𝑐𝑡)

)
+ 1
2𝑐

ˆ 𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔(𝜉) 𝑑𝜉,

d’Alembert’s solution to the wave equation: the position de-
pends on the position on the boundary at the intersections
with the characteristics, and the velocity between the inter-
sections of the characteristics with the boundary.

10Of course we already have another way to write the solution to a PDE on a finite interval or in a periodic setting: Fourier series. The relative merits of
each approach become clear in applications.
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7.4 Forced PDEs

Poisson’s equation Poisson’s equation is “Laplace’s equa-
tion with something on the right”, i.e.

∇2𝜙 = 𝑓 , (61)

with some boundary condition; in this course we look at
the easiest, namely the case where we know 𝜙 (x) = 𝑔(x)
on 𝜕𝑉 .
We use a very similar argument to before to find the solu-

tion here: set up Green’s Second Identity on𝑉 \ 𝐵(x, 𝜀):
ˆ
𝑉

(
𝐺 (x; ξ)∇2𝜙 (ξ) − 𝜙 (ξ)∇2𝐺 (x; ξ)

)
𝑑𝑉

=
ˆ
𝜕𝑉

(
𝐺 (x; ξ) 𝜕𝜙

𝜕𝜈
(ξ) − 𝜙 (ξ) 𝜕𝐺

𝜕𝜈
(x; ξ)

)
𝑑𝑆

−
ˆ
𝜕𝐵 (x,𝜀)

(
𝐺 (x; ξ) 𝜕𝜙

𝜕𝜈
(ξ) − 𝜙 (ξ) 𝜕𝐺

𝜕𝜈
(x; ξ)

)
𝑑𝑆

Using that ∇2𝐺 = 𝛿 , ∇2𝜙 = 𝑓 , and the previous argument
about shrinking the ball, we obtain

ˆ
𝑉

(
𝐺 (x; ξ) 𝑓 (ξ) − 0

)
𝑑𝑉

=
ˆ
𝜕𝑉

(
𝐺 (x; ξ) 𝜕𝜙

𝜕𝜈
(ξ) − 𝜙 (ξ) 𝜕𝐺

𝜕𝜈
(x; ξ)

)
𝑑𝑆

+ 𝜙 (x),

and supposing that𝐺 (x; ξ) = 0 for ξ ∈ 𝜕𝑉 , we obtain

𝜙 (x) =
ˆ
𝑉
𝐺 (x; ξ) 𝑓 (ξ) 𝑑𝑉 +

ˆ
𝜕𝑉
𝑔(ξ) 𝜕𝐺

𝜕𝜈
(x; ξ) 𝑑𝑆

Duhamel’s principle for the diffusion equation Roughly,
Duhamel’s principle says that a forcing is like having a
boundary condition at each time 𝑡 . We can realise this eas-
ily using the diffusion equation: suppose that we apply a
momentary forcing 𝑓 (𝑥, 𝜎) to each point at time 𝜎 ; this is
represented by

𝜃 (𝜎)𝑡 − 𝐷𝜃 (𝜎)𝑥𝑥 = 𝑓 (𝑥, 𝜎)𝛿 (𝑡 − 𝜎).

Integrating over the interval [𝜎 − 𝛿𝑡/2, 𝜎 + 𝛿𝑡/2], we have

𝜃 (𝜎) (𝑥, 𝜎 + 𝛿𝑡/2) − 𝜃 (𝜎) (𝑥, 𝜎 − 𝛿𝑡/2) − 0 = 𝑓 (𝑥, 𝜎).

But if we suppose that 𝜃 is initially zero, taking the limit of
this as 𝛿𝑡 → 0 gives

𝜃 (𝜎) (𝑥, 𝜎) = 𝑓 (𝑥, 𝜎),

i.e. a boundary condition at 𝑡 = 𝜎 . We have solved this
problem before: its solution is

𝜃 (𝜎) (𝑥, 𝑡) =
ˆ ∞

−∞
𝐺 (𝑥, 𝑡 ; 𝜉, 𝜎) 𝑓 (𝜉, 𝜎) 𝑑𝜉.

Each 𝜎 has a solution of this form, and the solution for
all such 𝜎 can be found by integrating: we have 𝑓 (𝑥, 𝑡) =´ ∞
0 𝑓 (𝑥, 𝜎)𝛿 (𝑡 − 𝜎) 𝑑𝜎 , so the solution to

𝜃𝑡 − 𝐷𝜃𝑥𝑥 = 𝑓

with zero initial condition is

𝜃 (𝑥, 𝑡) =
ˆ ∞

0

ˆ ∞

−∞
𝐺 (𝑥, 𝑡 ; 𝜉, 𝜎) 𝑓 (𝜉, 𝜎) 𝑑𝜉 𝑑𝜎

=
ˆ 𝑡

0

ˆ ∞

−∞
𝐺 (𝑥, 𝑡 ; 𝜉, 𝜏) 𝑓 (𝜉, 𝜏) 𝑑𝜉 𝑑𝜏,

since the Green’s function is zero for 𝜏 > 𝑡 .
This can also be derived using the Fourier transform in

the usual way: we just have an ODE forced by 𝑓 (𝑘, 𝑡) rather
than a homogeneous one.

Duhamel’s principle for the wave equation We give an
example of the calculation using the Fourier Transform. We
can equally well argue in the same way as we did in the pre-
vious section. Consider the forced wave equation

𝑢𝑡𝑡 − 𝑐2𝑢𝑥𝑥 = ℎ(𝑥, 𝑡) 𝑡 > 0

𝑢 (𝑥, 0) = 𝑓 (𝑥)
𝑢𝑡 (𝑥, 0) = 𝑔(𝑥).

Taking the Fourier transform,

𝑢̃𝑡𝑡 − 𝑐2𝑘2𝑢̃ = ℎ̃(𝑘, 𝑡) 𝑡 > 0

𝑢̃ (𝑘, 0) = 𝑓 (𝑘)
𝑢̃𝑡 (𝑘, 0) = 𝑔(𝑘).

We have the Green’s function for this initial value problem:
with homogeneous boundary conditions, it is

𝐻 (𝑡 − 𝜏) sin(𝑐𝑘 (𝑡 − 𝜏))
𝑐𝑘

.

Hence the solution is the sum of the integral of this against
ℎ(𝑘, 𝑡) and the part to account for the boundary terms,
which we have calculated before: we find

𝑢̃ (𝑘, 𝑡) = 𝑓 (𝑘) cos(𝑐𝑘𝑡) + 𝑔(𝑘) sin(𝑐𝑘 (𝑡 − 𝜏))
𝑐𝑘

+
ˆ 𝑡

0

sin(𝑐𝑘 (𝑡 − 𝜏))
𝑐𝑘

ℎ̃(𝑘, 𝜏) 𝑑𝜏 .

Taking the inverse Fourier transform and changing the or-
der of integration, we arrive at the general solution, namely

𝑢 (𝑥, 𝑡) = 1
2

(
𝑓 (𝑥 − 𝑐𝑡) + 𝑓 (𝑥 + 𝑐𝑡)

)
+ 1
2𝑐

ˆ 𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔(𝜉) 𝑑𝜉

+
ˆ 𝑡

0

ˆ 𝑥+𝑐 (𝑡−𝜏)

𝑥−𝑐 (𝑡−𝜏)
ℎ(𝜉, 𝜏) 𝑑𝜉 𝑑𝜏,

or as a clearer expression of Duhamel’s principle,

𝑢 (𝑥, 𝑡) = 1
2

(
𝑓 (𝑥 − 𝑐𝑡) + 𝑓 (𝑥 + 𝑐𝑡)

)
+
ˆ ∞

−∞
𝐺 (𝑥, 𝑡 ; 𝜉, 0)𝑔(𝜉) 𝑑𝜉

+
ˆ 𝑡

0

ˆ ∞

−∞
𝐺 (𝑥, 𝑡 ; 𝜉, 𝜏)ℎ(𝜉, 𝜏) 𝑑𝜉 𝑑𝜏
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Superposition of solutions satisfying different boundary
conditions In more complicated situations, we exploit the
linearity of the equation, which enables us to split the solu-
tion into several parts, each satisfying a simpler boundary
condition. For example, the wave equation on a half-line,
where 𝑢 (0, 𝑡) = 𝑣 (𝑡), together with the other equations:

𝑢𝑡𝑡 − 𝑐2𝑢𝑥𝑥 = ℎ(𝑥, 𝑡) 0 < 𝑥, 0 < 𝑡

𝑢 (𝑥, 0) = 𝑓 (𝑥)
𝑢𝑡 (𝑥, 0) = 𝑔(𝑥)

However, if we instead look at 𝑤 (𝑥, 𝑡) B 𝑢 (𝑥, 𝑡) − 𝑣 (𝑡), we
find it satisfies the system of equations

𝑤𝑡𝑡 − 𝑐2𝑤𝑥𝑥 = ℎ(𝑥, 𝑡) − 𝑣 (𝑡) 0 < 𝑥, 0 < 𝑡

𝑤 (𝑥, 0) = 𝑓 (𝑥) − 𝑣 (0)
𝑤𝑡 (𝑥, 0) = 𝑔(𝑥) − 𝑣 ′(0)
𝑤 (0, 𝑡) = 0,

and this we can solve, by using the Dirichlet Green’s func-
tion 𝐺𝐷 (𝑥, 𝑡 ; 𝜉, 𝜏) = 𝐺 (𝑥, 𝑡 ; 𝜉, 𝜏) −𝐺 (𝑥, 𝑡 ;−𝜉, 𝜏):

𝑤 (𝑥, 𝑡) = 1
2

(
𝑓 (𝑥 − 𝑐𝑡) + 𝑓 (𝑥 + 𝑐𝑡)

)
− 𝑣 (𝑡)

+
ˆ ∞

0
𝐺𝐷 (𝑥, 𝑡 ; 𝜉, 0)

(
𝑔(𝜉) − 𝑣 ′(0)

)
𝑑𝜉

+
ˆ 𝑡

0

ˆ ∞

0
𝐺𝐷 (𝑥, 𝑡 ; 𝜉, 𝜏)

(
ℎ(𝜉, 𝜏) − 𝑣 (𝜏)

)
𝑑𝜉 𝑑𝜏,

and adding 𝑣 (𝑡) to both sides gives us back 𝑢 (𝑥, 𝑡).
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