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1 Gambler’s Ruin

Let (𝑋𝑘 ) be a sequence of IID random variables taking value 1 with probability 𝑝 and −1 with probability
𝑞 = 1 − 𝑝 , and define 𝑆𝑛 =

∑𝑛
𝑘=1𝑋𝑘 . We consider the interval {𝑎, 𝑎 + 1, . . . , 𝑏}, where 𝑎 < 𝑏 are integers. This

is the classical gambler’s ruin problem. Define

𝑇 = min{𝑛 : 𝑆𝑛 ∈ {𝑎,𝑏}},

the time until 𝑆𝑛 becomes equal to 𝑎 or 𝑏. Notice that either 𝑆𝑇 = 𝑎 or 𝑆𝑇 = 𝑏.
We are interested in quantities like P(𝑆𝑇 = 𝑏) (i.e. the probability that a particular player wins) and E[𝑇 ],

the expected playing time.
𝑆𝑇 is a sum of a random number of independent random variables, but since𝑇 is not independent of the 𝑋𝑘

(think about small cases), we cannot apply the usual formula for expectations.
In IA PRobability, you learn how to find these quantities using recurrence relations, conditioning on the

first step of the random walk. In this handout, we are going to discuss a much quicker way to extract these,
and more general information, from the problem, using a new concept.

2 Martingales

Definition 1. A sequence (𝑀𝑘 )∞𝑘=0 of random variables with E[|𝑀𝑘 |] < ∞ is called a martingale1 if

(∀𝑛 ⩾ 0) E[𝑀𝑛+1 | 𝑀0, . . . , 𝑀𝑛] = 𝑀𝑛 .

That is, given what’s happened so far, tomorrow you expect to be in the same place you are today.
Here are some examples of martingales:

1. Let (𝑍𝑘 )∞𝑘=1 be a sequence of independent random variables with E[𝑍𝑘 ] = 0. Then (𝑍𝑘 ) is a martingale
since E[𝑍𝑘+1 | 𝑍0, . . . , 𝑍𝑘 ] = 0 = E[𝑍𝑘 ].

2. With the same 𝑍𝑘 as above, define 𝑌𝑛 =
∑∞

𝑘=1 𝑍𝑘 . Then

E[𝑌𝑛+1 | 𝑌1, . . . , 𝑌𝑛] = E[𝑌𝑛 + 𝑍𝑛+1 | 𝑌1, . . . , 𝑌𝑛] = 𝑌𝑛 + E[𝑍𝑛+1] = 𝑌𝑛,

since E[𝑍𝑛+1] = 0 and E[𝑌𝑛 | 𝑌𝑛] = 𝑌𝑛 .

3. Suppose that the 𝑍𝑘 are as above but with common variance 𝜎2. Then𝑊𝑛 = 𝑌 2
𝑛 − 𝑛𝜎2 is a martingale.

1The origins of this name are obscure: it appears to have originally been a French type of harness, then became the name of a
particular betting system, before being adopted for this.

1 © 2024 R Chapling



4. More generally, given𝑍𝑘 a sequence of independent random variables withE[𝑍𝑘 ] = 𝜇 andVar(𝑍𝑘 ) = 𝜎2,
and setting 𝑌𝑘 =

∑𝑛
𝑘=1 𝑍𝑘 , then

𝑀 (1)
𝑛 = 𝑌𝑛 − 𝑛𝜇, 𝑀 (2)

𝑛 = (𝑌𝑛 − 𝑛𝜇)2 − 𝑛𝜎2

are both martingales.

5. It looks like the previous two martingales might be two terms in a sequence of martingales. Indeed this
is the case: suppose that 𝑍𝑘 has characteristic function 𝜑𝑘 (𝑡). Then 𝑈𝑛 = exp(𝑖𝑡𝑆𝑛)/

∏𝑛
𝑘=1 𝜑𝑘 (𝑡)𝑛 is a

martingale. (Notice that𝑈𝑛+1 = 𝑈𝑛 exp(𝑖𝑡𝑍𝑛+1)/𝜑𝑛+1(𝑡), and then the result follows by “taking out what
is known”.)
Expanding as a series in 𝑡 about 𝑡 = 0 and using 𝜑𝑘 (0) = 1 gives

1+𝑖𝑡 (𝑆𝑛−
𝑛∑

𝑘=1

𝜑 ′(0))− 𝑡2

2
©­«
(
𝑆𝑛 −

𝑛∑
𝑘=1

𝜑 ′(0)
)2

−
𝑛∑

𝑘=1

(𝜑 ′′(0) − 𝜑 ′(0)2)ª®¬+𝑂 (𝑡3) = 1+𝑖𝑡𝑀 (1)
𝑛 − 𝑡2

2
𝑀 (2)

𝑛 +𝑂 (𝑡3),

explaining the previous martingales.

6. If the 𝑍𝑘 have finite MGFs𝑚𝑘 (𝜃 ), the same idea shows that𝑉𝑛 = exp(𝜃𝑆𝑛)/
∏𝑛

𝑘=1𝑚𝑘 (𝜃 )𝑛 is a martingale.

While the latter martingale does not always exist, it has several advantages when it does, since it is a real-
valued logarithmically convex function.2 We will exploit this in the next section.
There is plenty more to be said about martingales, in continuous time too, (see, for example, II Stochastic

Financial Models, or III Advanced PRobability) but we confine ourselves to the simplest case, which we
use as a demonstration of their power.

2.1 Stopping times

Definition 2. Let (𝑋𝑛) be a stochastic process (that is, a sequence of random variables). Let 𝑇 be a random
variable taking values in N ∪ {∞}. We say that 𝑇 is a stopping time for (𝑋𝑛) if

E[1{𝑇 ⩽ 𝑛} | 𝑋1, . . . , 𝑋𝑛] = 1{𝑇 ⩽ 𝑛}.

That is, if we know the values of𝑋1, . . . , 𝑋𝑛 , we knowwhether𝑇 ⩽ 𝑛. Another way to think about this, using
the gambling interpretation of probability: a stopping time is a strategy for choosing when to stop gambling.
3 For example: “When I’m out of money”, “When I’ve doubled my original stake”, “When it’s time for lunch”
and so on. It should be easy to interpret the most of following examples in this way:

1. 𝑇 = 𝑎: a constant is a stopping time.

2. More generally, if 𝑇 is independent of 𝑋𝑛 , 𝑇 is a stopping time.

3. If 𝑆 is a set, 𝑇 = min{𝑛 : 𝑋𝑛 ∈ 𝑆} is a stopping time, called the hitting time of 𝑆 .

4. If 𝑆,𝑇 are stopping times, then so are 𝑆 +𝑇 , min{𝑆,𝑇 } and max{𝑆,𝑇 }.

5. In contrast, max{𝑛 : 𝑋𝑛 ∈ 𝑆} is not usually a stopping time.

In particular, in Gambler’s Ruin the time to absorption is a stopping time.

2Rather unsurprisingly, a function 𝑓 is logarithmically convex (or log-convex for short) if log 𝑓 is a convex function.
3Or for when to sell your shares, same thing.

2 © 2024 R Chapling



2.2 The magic part: the Optional Stopping Theorem

The last thing about martingale theory we will discuss is the following remarkable theorem.

Theorem 3 (Doob’s Optional Stopping Theorem). Let (𝑀𝑛) be a martingale with |𝑀𝑛+1 −𝑀𝑛 | bounded, and 𝑇
be a stopping time for (𝑀𝑛) with P(𝑇 < ∞) = 1. Then

E[𝑀𝑇 ] = E[𝑀0] .

This is not even the most general form of this theorem, and nor is this the most powerful theorem in mar-
tingale theory. But it suffices for what we need.

3 Application to Gambler’s Ruin

Gambler’s Ruin is special, because it has only two absorbing states. This means that we need very little
information to determine what it does, essentially because

E[𝑓 (𝑇 )𝑔(𝑆𝑇 )] = 𝑔(𝑏)E[𝑓 (𝑇 )1{𝑆𝑇 = 𝑏}] + 𝑔(𝑎)E[𝑓 (𝑇 )1{𝑆𝑇 = 𝑎}],

so all that is required is to calculate these two expectations. In particular, knowing two quantities involving
the same function is normally enought to determine the expectation of the function.

3.1 Hitting probability

We start with P(𝑆𝑇 = 𝑎). The trick that we shall exploit time and again is the following: 𝑋𝑘 are IID and
bounded, so the MGF𝑚(𝜃 ) = E[𝑒𝜃𝑋1] exists and 𝑉𝑛 (𝜃 ) = exp(𝜃𝑆𝑛)𝑚(𝜃 )−𝑛 exists and is a martingale.
Suppose first thatE[𝑋1] ≠ 0. Then𝑚′(𝜃 ) ≠ 0, and𝑚 is log-convex and so convex. This implies that𝑚(𝜃 ) = 1

has exactly 2 real roots: 0, and some other number 𝜁 which has the opposite sign to E[𝑋1]. Thus exp(𝜁𝑆𝑛) is
a martingale. (The other root gives the constant martingale 1.)
We apply the Optional Stopping Theorem to this martingale, giving

E[exp(𝜁𝑆𝑇 ) | 𝑆0 = 𝑥] = E[exp(𝜁𝑆0) | 𝑆0 = 𝑥] = 𝑒𝜁𝑥 .

But, provided we know that P(𝑆𝑇 = 𝑎 | 𝑆0 = 𝑥) + P(𝑆𝑇 = 𝑏 | 𝑆0 = 𝑥) = 1, this is enough information, because
the above gives the additional equation

𝑒𝜁𝑥 = E[exp(𝜁𝑆𝑇 )1{𝑆𝑇 = 𝑎} | 𝑆0 = 𝑥] + E[exp(𝜁𝑆𝑇 )1{𝑆𝑇 = 𝑏} | 𝑆0 = 𝑥]
= E[exp(𝜁𝑎)1{𝑆𝑇 = 𝑎} | 𝑆0 = 𝑥] + E[exp(𝜁𝑏)1{𝑆𝑇 = 𝑏} | 𝑆0 = 𝑥]
= 𝑒𝜁𝑎P(𝑆𝑇 = 𝑎 | 𝑆0 = 𝑥) + 𝑒𝜁𝑏P(𝑆𝑇 = 𝑏 | 𝑆0 = 𝑥),

and now we can solve these two simultaneous equations to find

P(𝑆𝑇 = 𝑎 | 𝑆0 = 𝑥) = 𝑒𝜁𝑏 − 𝑒𝜁𝑥

𝑒𝜁𝑏 − 𝑒𝜁𝑎

P(𝑆𝑇 = 𝑏 | 𝑆0 = 𝑥) = 𝑒𝜁𝑥 − 𝑒𝜁𝑎

𝑒𝜁𝑏 − 𝑒𝜁𝑎
,

avoiding recurrence relations completely.
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3.2 Expected time to absorption/game length

We consider the martingale𝑀 (1)
𝑛 = 𝑆𝑛 − 𝑛𝜇. The Optional Stopping Theorem implies that

E[𝑆𝑇 −𝑇 𝜇 | 𝑆0 = 𝑥] = E[𝑆0 − 0𝜇 | 𝑆0 = 𝑥] = 𝑥,

so we immediately see that

𝜇E[𝑇 | 𝑆0 = 𝑥] = −𝑥 + E[𝑆𝑇 | 𝑆0 = 𝑥]
= −𝑥 + 𝑎P(𝑆𝑇 = 𝑎 | 𝑆0 = 𝑥) + 𝑏P(𝑆𝑇 = 𝑏 | 𝑆0 = 𝑥)

= −𝑥 + 𝑎
𝑒𝜁𝑏 − 𝑒𝜁𝑥

𝑒𝜁𝑏 − 𝑒𝜁𝑎
+ 𝑏 𝑒

𝜁𝑥 − 𝑒𝜁𝑎

𝑒𝜁𝑏 − 𝑒𝜁𝑎

=
(𝑎 − 𝑥)𝑒𝜁𝑏 + (𝑏 − 𝑎)𝑒𝜁𝑥 + (𝑥 − 𝑏)𝑒𝜁𝑎

𝑒𝜁𝑏 − 𝑒𝜁𝑎

3.3 All the information desirable: the joint MGF

This is all well and good, but ideally we would like to derive all the information about these distributions at
once. The method remains similar to our approach in previous cases, however.
We would like to know E[𝑒𝜙𝑇+𝜃𝑆𝑇 | 𝑆0 = 𝑥]. Notice that exp(𝑆𝑛𝜃 + 𝑛𝜙) is a martingale if 𝜙 = − log(𝑚(𝜃 )),

where𝑚 is the MGF of 𝑋𝑘 . We now suppress the 𝑆0 = 𝑥 condition for brevity. Then by the Optional Stopping
Theorem,

𝑒𝜃𝑥 = E[𝑒𝜃𝑆𝑇 +𝜙𝑇 ] = 𝑒𝜃𝑎E[𝑒𝜙𝑇1{𝑆𝑇 = 𝑎}] + 𝑒𝜃𝑏E[𝑒𝜙𝑇1{𝑆𝑇 = 𝑏}] .
Since𝑚 is convex and tends to +∞ as 𝜃 → ±∞ (provided that 𝑋𝑖 takes both positive and negative values with
positive probability), for every 𝜙 < 0 there are exactly two solutions to 𝑚(𝜃 ) = 𝑒𝜙 , call these 𝜃±. Then the
above equation becomes two,

𝑒𝜃+𝑥 = 𝑒𝜃+𝑎E[𝑒𝜙𝑇1{𝑆𝑇 = 𝑎}] + 𝑒𝜃+𝑏E[𝑒𝜙𝑇1{𝑆𝑇 = 𝑏}]
𝑒𝜃−𝑥 = 𝑒𝜃−𝑎E[𝑒𝜙𝑇1{𝑆𝑇 = 𝑎}] + 𝑒𝜃−𝑏E[𝑒𝜙𝑇1{𝑆𝑇 = 𝑏}],

and solving these equations gives

E[𝑒𝜙𝑇1{𝑆𝑇 = 𝑎}] = 𝑒𝜃−𝑏+𝜃+𝑥 − 𝑒𝜃+𝑏+𝜃−𝑥

𝑒𝜃−𝑏+𝜃+𝑎 − 𝑒𝜃+𝑏+𝜃−𝑎
E[𝑒𝜙𝑇1{𝑆𝑇 = 𝑏}] = 𝑒𝜃−𝑥+𝜃+𝑎 − 𝑒𝜃+𝑥+𝜃−𝑎

𝑒𝜃−𝑏+𝜃+𝑎 − 𝑒𝜃+𝑏+𝜃−𝑎

from which we obtain the MGF

E[𝑒𝜙𝑇+𝜃𝑆𝑇 | 𝑆0 = 𝑥] = 𝑒𝜃𝑎 (𝑒𝜃−𝑏+𝜃+𝑥 − 𝑒𝜃+𝑏+𝜃−𝑥 ) + 𝑒𝜃𝑏 (𝑒𝜃−𝑥+𝜃+𝑎 − 𝑒𝜃+𝑥+𝜃−𝑎)
𝑒𝜃−𝑏+𝜃+𝑎 − 𝑒𝜃+𝑏+𝜃−𝑎

.

This can now be used to calculate essentially anything wewant, by differentiating enough and putting𝜙, 𝜃 = 0.
Remark 4. Significantly, nothing we have done here assumes the random walk is simple. Everything still applies
if, for example, we have a nonzero probability of staying in the same place, or, with careful modification of
the definition of 𝑆𝑇 , if we can take steps in units of larger than one: the MGF’s convexity is all we need for the
analysis. This is a vast improvement over the recurrence relation analysis, where even the slightest adjustment
changes everything!
Remark 5. The above analysis has assumed 𝜇 ≠ 0, in which case it is easy to check that E[𝑇 ] < ∞ (the random
walk drifts towards one of the barriers on average). When 𝜇 = 0, provided that E[𝑇 ] remains finite, we can
take the limit to obtain results: remember that since𝑚′(0) = 𝜇 = 0, the origin is the unique minimum of the
MGF, and 𝜎 > 0, so the roots have expansions of the form 𝜃±(𝜙) = ±

√
2𝜙/𝜎 +𝑂 (𝜙).

On the other hand, the case 𝜇 = 0 often actually makes things easier to calculate: the list ofWaldmartingales
then begins

𝑀 (1)
𝑛 = 𝑆𝑛 𝑀 (2)

𝑛 = 𝑆2𝑛 − 𝜎2𝑛 𝑀 (3)
𝑛 = 𝑆3𝑛 − 3𝜎2𝑛𝑆𝑛 − 𝑛𝜇3,

where 𝜇3 = E[𝑋 3]. From these it is possible to calculate E[𝑇 𝑝𝑆
𝑞
𝑇 ] inductively for any 𝑝, 𝑞, and for small values

this is easier than the MGF martingale method due to the complexity of the root expressions in general.
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4 Wald identities

We are familiar with

Theorem 6. Let (𝑋𝑘 )∞𝑘=1 be independent with finite mean 𝜇 and set 𝑆𝑛 =
∑𝑛

𝑘=1𝑋𝑘 . Let 𝑁 be a positive integer-
valued random variable, independent of the 𝑋𝑘 , with E[𝑁 ] < ∞. Then

E[𝑆𝑁 ] = 𝜇E[𝑁 ] . (1)

If in addition Var(𝑋𝑘 ) = 𝜎2 and E[𝑁 2] are finite,

Var(𝑆𝑁 ) = 𝜇2 Var(𝑁 ) + 𝜎2E[𝑁 ] . (2)

Theorems relating the expectation of sums of a random number of random variables to the expectation of
their parts are calledWald identities.
The above result does not apply to 𝑆𝑇 from the previous section, since 𝑇 is not independent of the 𝑋𝑘 .

However, 𝑇 is a stopping time, and so the Optional Stopping Theorem4 enables us to prove some similar
identities:

Theorem 7 (Wald identities for stopping times). Let (𝑋𝑘 )∞𝑘=1 be independent with finite mean 𝜇 and set 𝑆𝑛 =∑𝑛
𝑘=1𝑋𝑘 . Let 𝑇 be a stopping time for the 𝑋𝑘 , with E[𝑇 ] < ∞. Then

E[𝑆𝑇 ] = 𝜇E[𝑇 ] . (3)

If in addition Var(𝑋𝑘 ) = 𝜎2 and E[𝑇 2] are finite,

E[(𝑆𝑇 −𝑇 𝜇)2] = 𝜎2E[𝑇 ] (4)

Lastly, if the 𝑋𝑘 are IID with finite MGF𝑚(𝜃 ),

E[exp(𝜃𝑆𝑇 )(𝑚(𝜃 ))−𝑇 ] = 1. (5)

One proves this by applying the Optional Stopping Theorem to the now-familiar martingales 𝑀 (1)
𝑛 , 𝑀 (2)

𝑛

and 𝑉𝑛 . The identities (3) and (5) are familiar, but (4) contains a surprise: expanding, we find that

𝜎2E[𝑇 ] = E[(𝑆𝑇 −𝑇 𝜇)2]
= E[𝑆2𝑇 ] − 2𝜇E[𝑇𝑆𝑇 ] + 𝜇2E[𝑇 2]
= E[𝑆2𝑇 ] − E[𝑆𝑇 ]2 + E[𝑆𝑇 ]2 − 2𝜇E[𝑇𝑆𝑇 ] + 𝜇2E[𝑇 2] − 𝜇2E[𝑇 ]2 + 𝜇2E[𝑇 ]2

= Var(𝑆𝑇 ) − 2𝜇 cov(𝑇, 𝑆𝑇 ) + 𝜇2 Var(𝑇 ),

using the first Wald identity (3) to rewrite some of the E[𝑆𝑇 ]s and E[𝑇 ]s. Hence

Var(𝑆𝑇 ) = 𝜎2E[𝑇 ] − 𝜇2 Var(𝑇 ) + 2𝜇 cov(𝑇, 𝑆𝑇 ).

Now, if 𝑇 is independent of the 𝑋𝑘 , we find by the Law of Total Expectation that

E[𝑇𝑆𝑇 ] = E[E[𝑇𝑆𝑇 | 𝑇 ]] = E[𝑇E[𝑆𝑇 | 𝑇 ]] = E[𝑇 𝜇𝑇 ] = 𝜇E[𝑇 2],

and so in this case cov(𝑇, 𝑆𝑇 ) = 𝜇 Var(𝑇 ), and we recover the formula (2).
But in the Gambler’s Ruin case, it turns out that if 𝑏 − 𝑎 is even and 𝑥 = (𝑏 + 𝑎)/2, we can calculate using

the joint MGF that cov(𝑇, 𝑆𝑇 ) = 0, and so we find, surprisingly,

Var(𝑆𝑇 ) = 𝜎2E[𝑇 ] − 𝜇2 Var(𝑇 ),

with the opposite sign to the expected5 one!
4Although probably a more general version than the version we gave above.
5Pun not intended.
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