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This note is intended to be a slightly more proper version of the summary I gave at the end of Probability Sheet 2,
it is not meant to be in any way complete or authoritative!

1 Definition
In his famous paper,1 Riemann uses

𝜁 (𝑠) =
∞∑
𝑛=1

1
𝑛𝑠

, Re 𝑠 > 1 (1)

extensively. This function was originally studied by Euler, who produced many of your favourite identities like∑∞
𝑛=1 𝑛

−2 = 𝜋2/6 and so on, but it was Riemann that really demonstrated how deeply connected it is to the primes,
and proved most of its important properties, so it seems reasonable to name it after him.

2 Euler Product
One result that Euler derived (and that the question gets you to derive in a very different way) is the following
product

𝜁 (𝑠) =
∏

𝑝 prime
(1 − 𝑝−𝑠 )−1, Re 𝑠 > 1; (2)

this is called the Euler product of the zeta function.

3 Analytic continuation
The series (1) and product (2) that we currently have only work for Re 𝑠 > 1. We would really like to have a function
defined on as much of the complex plane as possible. It turns out there is a unique way of doing this that maintains
that 𝜁 (𝑠) is complex-differentiable (“analytic”). Riemann writes down an integral over a contour in the complex
plane that can be shown to be equal to the series in Re 𝑠 > 1, but exists as an analytic function with a finite value for
all 𝑠 with one exception: at 𝑠 = 1 it looks like 1/(𝑠 − 1).

4 Functional equation
The analytically continued 𝜁 -function (which we still call 𝜁 since this version supersedes our original definition) has
the following functional equation, which Riemann also proves (in two different ways) in his paper:

𝜁 (1 − 𝑠) = 2(2𝜋)−𝑠 cos( 12𝜋𝑠)Γ(𝑠)𝜁 (𝑠). (3)

In particular, this tells us about the region Re 𝑠 < 0 in terms of the region Re 𝑠 > 1, where we know quite a lot. It
also suggests that the line Re 𝑠 = 1/2 is significant, since it is mapped to itself.
1“On the Number of Primes Less Than a Given Magnitude”, original “Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse”, Mon-
atsberichte der Königlich Preußischen Akademie der Wissenschaften zu Berlin, Nov. 1859. This paper, one of the most famous in mathematics,
essentially founded the field of analytic number theory. Using 𝑠 for the argument also originates in this paper, a useful convention at least
partly because it helps distinguish it from Weierstrass’s function 𝜁 (𝑧) , a pseudo-elliptic function that is the integral of ℘(𝑧) .
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5 The number of primes less than a given magnitude
Probably themost extraordinary claim in Riemann’s paper is the following formula, calledRiemann’s explicit formula:

Π(𝑥) = li(𝑥) −
∑
𝜌

li(𝑥𝜌 ) − log 2 +
ˆ ∞

𝑥

𝑑𝑡

𝑡 (𝑡2 − 1) log 𝑡 (4)

(this is not Riemann’s notation, his is rather more generic), where:

• The function on the left is

Π(𝑥) =
∞∑
𝑛=1

1
𝑛
𝜋 (𝑥1/𝑛)

and 𝜋 (𝑥) is the number of primes less than 𝑥 . For a given 𝑥 this always terminates since eventually 𝑥1/𝑛 < 2.
For large 𝑥 the first term dominates significantly: using the Prime Number Theorem (see below) gives that it
is asymptotically 𝑥/log𝑥 , while the next term is asymptotically 𝑥1/2/log𝑥 .

• li(𝑥) =
´ 𝑥
0 𝑑𝑡/log 𝑡 is the logarithmic integral, which had been observed by Gauss to be a good approximation

for 𝜋 (𝑥) from looking at tables of both functions; Riemann’s paper was intended as a large generalisation of
this paper. This is the “main term”; it comes from the simple pole of 𝜁 (𝑠) at 𝑠 = 1.

• 𝜌 is a sum over the zeros of 𝜁 (𝑠) in the strip 0 ⩽ Re 𝑠 ⩽ 1.

• The zeros with Re 𝑠 < 0 contribute the last term, which is tiny: even for 𝑥 = 2 its value is < 0.15.

The magnitude of the contributions in the second-most-significant term are determined by the real parts of the
zeros, more on this in the next section.
The formula (4) was derived by Riemann in a way that even at the time was regarded as somewhat suspect, and as

with many of Riemann’s extraordinary contributions, required some time to be put on a firmer footing; in this case
it was done by von Mangoldt in 1895, who proved a variant based on a different prime-counting function, and then
converted it into Riemann’s own formula.

6 Zeros
Because an infinite product of complex numbers cannot converge to 0 unless one of the factors is 0, Euler’s product
(2) tells us that 𝜁 (𝑠) has no zeros with Re 𝑠 > 1.
The functional equation tells us that the only zeros in Re 𝑠 < 0 are at negative even integers: these are called

trivial zeros, firstly because they were so easy to find, secondly because their contribution to the explicit formula (4)
is uninterestingly small. Both of these were known to Riemann.
Therefore all the interesting zeros of 𝜁 (𝑠) lie in the strip 0 ⩽ Re 𝑠 ⩽ 1.
In 1896, Hadamard and de la Vallée Poussin independently proved the Prime Number Theorem,

𝜋 (𝑥) ∼ 𝑥

log𝑥
,

by showing that 𝜁 (𝑠) has no zeros with Re 𝑠 = 1. Hence we are left with the critical strip, 0 < Re 𝑠 < 1 (notice that
this means that the “main term” in the explicit formula (4) really does dominate each of the terms in the sum over
the zeros).
The functional equation also tells us that there is symmetry in the zeros: a zero at 1/2−𝑠 in the critical strip implies

that there is one at 1/2+ 𝑠 . The zeta function has real coefficients and so 𝜁 (𝑠) = 𝜁 (𝑠), which means that the zeros are
also symmetric about the real axis.
Recalling that the real parts of the zeros affect the magnitude of the corrective terms in the Explicit Formula (4),

and that if we have off the critical line, the previous paragraph implies we will have at least one with real part > 1/2,
the best possible scenario for the size of the correction terms is that all the zeros lie on the critical line Re 𝑠 = 1/2;
this is the Riemann hypothesis, now the most famous unsolved problem in Mathematics.
Although the result remains open, we have various partial results and evidence:
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• The Prime Number Theorem restricts us to looking in the open strip instead of the closed one. In fact a
refinement of this gives a zero-free region: de la Vallée Poussin showed in 1899 there are no zeros with
Re 𝑠 ⩾ 1 − 𝐶/log|ℑ𝑠 |) for some positive constant 𝐶 , and this has been improved over the years by various
people, the Wikipedia article on the Riemann hypothesis2 has a list of recent papers and results in this area.

• G.H. Hardy proved in 1915 that there are infinitely many zeros on the critical line. This is interesting but tells
us very little else: not only could there be infinitely many off the critical line, but their density could be such
that the proportion of zeros on the critical line is 0 (to put this on a firm footing, imagine a rectangle of the
critical strip of finite height, and count those on and off in it).

• The best current result is that, by this measure, about 5/12 of the zeros are on the critical line; this was proven
very recently by Pratt, Robles, Zaharescu, and Zeindler.3

• As far as numerical calculations go, the evidence is pretty overwhelming: themost recent paper, by 4 calculated
the positions of the first 12 ·1012 zeros, up to imaginary part roughly 3 ·1012. (Obviously all were on the critical
line, or you would have heard about the counterexample!)

• The ideas in the zeta function has been extended in lots of other situations for other series with terms re-
sembling 𝑛−𝑠 , leading to many other zeta functions (and their cousins with other arithmetic functions in the
numerator, 𝐿-functions), many of which have most of the same characteristics as Riemann’s zeta function,
including equivalents of Euler products, functional equations, the explicit formula, and of course their own
equivalent of the Riemann hypothesis. Some of these equivalent RHs are proven.

7 Further Reading
1. Wikipedia contributors, ”On the Number of Primes LessThan a Given Magnitude,” Wikipedia, The Free Encyc-

lopedia, https://en.wikipedia.org/w/index.php?title=On_the_Number_of_Primes_Less_Than_a_Given_
Magnitude&oldid=1187516111 (accessed February 23, 2024).
TheWikipedia article on Riemann’s paper is pretty solid, containing a description of the entire contents of the paper, and
links to the original and a translation

2. Edwards, H. (2001) Riemann’s Zeta Function, Dover.
A good starting point for the theory, covers from Riemann to Hardy and some of the newer results about the zeros. Quite
approachable, and reasonably-priced since it’s a Dover book.

3. Titchmarsh, E. C. (1930),TheTheory of the Riemann Zeta-function, Second edition OUP 1987, revised with more
up-to-date information by D. R. Heath-Brown.
A much more technical book that, goes into a lot of the details of almost every aspect of 𝜁 (𝑠), including much of the
material surrounding the Riemann hypothesis, at least as known in 1930. (Heath-Brown updated this substantially, but
obviously there’s only so much that can be done while maintaining the integrity of a book this age.)

4. Zagier, D. (1977) ‘The First 50 Million Prime Numbers’. TheMathematical Intelligencer 1 (Suppl 2), 7–19 https:
//doi.org/10.1007/BF03351556

A nice readable popular(ish) article about topics around the explicit formula. Contains graphs of the first few terms in the
explicit formula. [Paywalled, but you can read it from eduroam or other university places.]

5. Garrett, P. (2010) ‘Riemann’s Explicit/Exact formula’ https://web.archive.org/web/20230221132422/https:
//www‐users.cse.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.pdf

Expositary article about the explicit formula that goes into rather more detail about the formula, including a sketch of a
derivation. [Original still available at https://www‐users.cse.umn.edu/~garrett/m/mfms/notes_c/mfms_notes_02.
pdf, but Internet Archive link given to ideally counteract link rot.]

2https://en.wikipedia.org/wiki/Riemann_hypothesis#Zero‐free_regions
3Pratt, Robles, Zaharescu, and Zeindler (2018), ‘More than five-twelfths of the zeros of 𝜁 are on the critical line’, preprint available at https:
//arxiv.org/abs/1802.10521.

4Platt and Trudigan, (2021), ‘The Riemann hypothesis is true up to 3 · 1012’, preprint available at https://arxiv.org/abs/2004.09765
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