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1 Wave Mechanics

Main idea: System is described by a C-valued wavefunction𝜓 (𝑥, 𝑡).
Time evolution is described by the (Time-dependent) Schrödinger
equation (SE):

𝑖ℏ𝜕𝑡𝜓 = 𝐻𝜓 = − ℏ2

2𝑚
∇2𝜓 +𝑉 (𝑥)𝜓 (1)

This is first-order in time, so only need 𝜓 (𝑥, 0) to determine sub-
sequent behaviour.
Separation of variables 𝜓 (𝑥, 𝑡) = 𝑒−𝑖𝐸𝑡 𝜒 (𝑥) gives Time-

independent Schrödinger equation (TISE):

− ℏ2

2𝑚
∇2𝜓 +𝑉 (𝑥)𝜓 = 𝐸𝜓 (2)

If𝑉 has at worst a finite jump at a point,𝜓,𝜓 ′ are continuous there.
These equations are linear, and in fact QM is entirely linear.

The superposition principle says if 𝜓, 𝜙 are states, so is 𝑎𝜓 + 𝑏𝜙 for
𝑎, 𝑏 ∈ C. The space of wavefunctions is given the inner product

〈𝜙,𝜓 〉 =
ˆ
R
𝜙 (𝑥)𝜓 (𝑥) 𝑑𝑥 ; (3)

𝜓 is normalised if 〈𝜓,𝜓 〉 = 1.

1.1 Probability

If the system is in the state with wavefunction 𝜓 , the probability
that we measure it to be in the state with wavefunction 𝜙 is

|〈𝜙,𝜓 〉|2
〈𝜙, 𝜙〉〈𝜓,𝜓 〉

Given this, the overall phase of the wavefunction has no physical
impact. The probability of finding the particle in an infinitesimal
interval 𝑑𝑥 is |𝜓 (𝑥) |2

〈𝜓,𝜓 〉 𝑑𝑥 = 𝜌 (𝑥) 𝑑𝑥 . The probability density 𝜌 sat-
isfies the continuity equation

𝜕𝑡 𝜌 + ∇ · j = 0, (4)

where j is the probability current

j =
ℏ

2𝑖𝑚

(
𝜓∇𝜓 −𝜓∇𝜓

)
=

ℏ
𝑚
=(𝜓∇𝜓 ). (5)

1.2 Plane Wave and Wavepacket

SE for a free particle is

𝑖ℏ𝜕𝑡𝜓 = − ℏ2

2𝑚
∇2𝜓 . (6)

A (non-normalisable) solution is

𝜓 (𝑥, 𝑡) = exp (𝑖k · x − 𝑖𝜔𝑡), (7)

with𝜔 = ℏ𝑘2/(2𝑚). Interpreted as a particle beam or a plane wave.
The de Broglie relations for a matter wave are

𝐸 = ℏ𝜔, p = ℏk. (8)

These imply that this is an energy eigenstate with
𝐸 = 𝑝2/(2𝑚), as we expect classically.
Given a Gaussian initial state 𝜓 (𝑥, 0) = (𝑎𝜋)−1/4𝑒−𝑥2/(2𝑎) , one

finds that it evolves into

𝜓 (𝑥, 𝑡) =
( 𝑎
𝜋

)1/4 1√
𝑎 + 𝑖ℏ𝑡/𝑚

exp

(
− 𝑥2

2(𝑎 + 𝑖ℏ𝑡/𝑚)

)
. (9)

1.3 Galilean Transformation

Given a solution Ψ(𝑥, 𝑡), we can consider a Galilean transforma-
tion 𝑡 ′ = 𝑡 , 𝑥 ′ = 𝑥 − 𝑢𝑡 . Then looking for solutions of the form
Ψ(𝑥 − 𝑢𝑡, 𝑡)𝑒𝑖𝛼 (𝑥,𝑡 ) , which all have the same probability density,
we find

Ψ(𝑥 − 𝑢𝑡, 𝑡)𝑒𝑖𝑚 (𝑢𝑥−𝑢2𝑡/2)/ℏ (10)

is also a solution.

2 Example Potentials

Anormalisable solution of the TISEwith a given𝑉 is called a bound
state of 𝑉 . In this section we find the bound states of some simple
potentials.

2.1 Infinite Square Well

0 𝑎
𝑥

𝑉 (𝑥) =
{
0 0 ⩽ 𝑥 ⩽ 𝑎

∞ else
(11)

Outside [0, 𝑎], wavefunction must be zero (or TISE makes no
sense). Inside, have

− ℏ2

2𝑚
𝜒 ′′ = 𝐸𝜒, (12)

which is solved by 𝜒 (𝑥) = 𝐴 sin𝑘𝑥 + 𝐵 cos𝑘𝑥 , 𝑘2 = 2𝑚𝐸/ℏ2.
Continuity of 𝜒 at 𝑥 = 0 =⇒ 𝐵 = 0, and continuity at
𝑥 = 𝑎 =⇒ 𝑘 = 0, 𝜋/𝑎, 2𝜋/𝑎, . . .. Hence energy levels are

𝐸𝑛 =
𝑛2ℏ2𝜋2

2𝑚𝑎2
, 𝑛 = 1, 2, · · · (13)

with normalised eigenfunctions (note can’t have 𝑛 = 0 to have a
normalisable wavefunction)

𝜒𝑛 (𝑥) =
√

2
𝑎
sin

(𝑛𝜋𝑥
𝑎

)
. (14)

This is the easiest way, but one may also look at odd and even solu-
tions in the symmetric box on [−𝑎/2, 𝑎/2].

1 © 2016 R Chapling



2.2 Finite Square Well

− 1
2𝑎

1
2𝑎

0
𝑥

𝑈

𝑉 (𝑥) =
{
0 −𝑎/2 ⩽ 𝑥 ⩽ 𝑎/2
𝑈 else

(15)

Outside, have

− ℏ2

2𝑚
𝜒 ′′ = (𝐸 −𝑉 )𝜒 (16)

Need exponential decay here to be normalisable, so take
2𝑚(𝐸 −𝑈 )/ℏ2 = −𝜆2 < 0, and 2𝑚𝐸/ℏ2 = 𝑘2 as before. We assume
that 𝜆, 𝑘 > 0. Potential is unchanged under parity 𝑃 : 𝑥 ↦→ −𝑥 , so
can look solutions with definite parity: even and odd.

Even Solution has form

𝜒 (𝑥) =

𝐴𝑒𝜆 (𝑥+𝑎/2) 𝑥 < −𝑎/2
𝐵 cos𝑘𝑥 |𝑥 | ⩽ 𝑎/2
𝐴𝑒−𝜆 (𝑥−𝑎/2) 𝑥 > 𝑎/2

(17)

Continuity of 𝜒, 𝜒 ′ at 𝑥 = 𝑎/2 gives

𝐴 − 𝐵 cos 1
2𝑘𝑎 = 0

−𝜆𝐴 + 𝑘𝐵 sin 1
2𝑘𝑎 = 0.

(18)

If we write this as a matrix equation for 𝐴, 𝐵, to have a nonzero
solution to the original equations, we need the determinant to van-
ish. This gives

𝑘 sin 1
2𝑘𝑎 − 𝜆 cos 1

2𝑘𝑎 = 0. (19)

So have two conditions on 𝑘 and 𝜆. Writing 𝛼 = 𝑘𝑎/2, 𝛽 = 𝜆𝑎/2,
we have

𝛽 = 𝛼 tan𝛼, 𝛼2 + 𝛽2 =
8𝑚𝑈

𝑎2ℏ2
(20)

Plotting both of these conditions shows that there is always a solu-
tion. Taking𝑈 → ∞ recovers the infinite well’s even solutions.

1
2𝜋 𝜋 3

2𝜋 2𝜋 5
2𝜋 3𝜋

√
8𝑚𝑈
𝑎ℏ

𝐸0

𝐸2

𝛼

𝛽

Odd Solution has form

𝜒 (𝑥) =

−𝐴𝑒𝜆 (𝑥−𝑎/2) 𝑥 < −𝑎/2
𝐵 sin𝑘𝑥 |𝑥 | ⩽ 𝑎/2
𝐴𝑒−𝜆 (𝑥−𝑎/2) 𝑥 > 𝑎/2

(21)

Continuity of 𝜒, 𝜒 ′ at 𝑥 = 𝑎/2 gives

𝐴 − 𝐵 sin 1
2𝑘𝑎 = 0

−𝜆𝐴 − 𝑘𝐵 cos 1
2𝑘𝑎 = 0.

(22)

If we write this as a matrix equation for 𝐴, 𝐵, to have a nonzero
solution to the original equations, we need the determinant to van-
ish. This gives

− 𝑘 cos 1
2𝑘𝑎 − 𝜆 sin 1

2𝑘𝑎 = 0. (23)

Again have two conditions on 𝑘 and 𝜆. In the same notation as
above, we have

𝛽 = −𝛼 cot𝛼, 𝛼2 + 𝛽2 =
8𝑚𝑈

𝑎2ℏ2
(24)

Now, there is only a solution if 32𝑚𝑈 /𝑎2ℏ2𝜋2 ⩾ 1. Again, taking
𝑈 → ∞ recovers the infinite well’s odd solutions.

1
2𝜋 𝜋 3

2𝜋 2𝜋 5
2𝜋 3𝜋

√
8𝑚𝑈
𝑎ℏ 𝐸1

𝐸3
𝛼

𝛽

So the system has a finite number of bound states, with energies
satisfying the inequalities

𝑛2ℏ2𝜋2

2𝑚𝑎2
< 𝐸𝑛 <

(𝑛 + 1)2ℏ2𝜋2
2𝑚𝑎2

. (25)

3 Harmonic Oscillator

TISE is
− ℏ2

2𝑚
𝜒 ′′ + 1

2
𝑚𝜔2𝑥2𝜒 = 𝐸𝜒. (26)

Nondimensional change of variables 𝑦 =
√
𝑚𝜔/ℏ𝑥 , E = 2𝐸/(ℏ𝜔)

gives

− 𝑑2𝜒

𝑑𝑥2
+ 𝑦2𝜒 = E𝜒. (27)

If E = 1, has solution 𝜒0 (𝑦) = 𝑒−𝑦
2/2. Expect all solutions to act

like this due to dominance of 𝑦2𝜒 term. Substituting
𝜒 (𝑦) = 𝑓 (𝑦)𝑒−𝑦2/2, find the Hermite equation,

𝑑2 𝑓

𝑑𝑦2
− 2𝑦

𝑑 𝑓

𝑑𝑦
+ (E − 1) 𝑓 = 0. (28)

Method of Frobenius gives either nonterminating series that are
asymptotic to 𝑒𝑦

2 as |𝑦 | → ∞, or if E = 2𝑛 + 1, 𝑛 = 0, 1, . . ., the
Hermite polynomial of degree 𝑛. Hence the bound-state energies
are 𝐸𝑛 = (𝑛 + 1/2)ℏ𝜔 , and the corresponding normalised eigen-
states are

𝜒𝑛 (𝑦) =
𝜋−1/4
√
2𝑛𝑛!

𝐻𝑛 (𝑦)𝑒−𝑦
2/2 . (29)

4 Scattering

Suppose 𝑉 (𝑥) = 0 outside [0, 𝑎]. We again take 𝑘 > 0,
𝑘2 = 2𝑚𝐸/ℏ2. We look for solutions of the form

𝜓 (𝑥) =
{
𝐼𝑒𝑖𝑘𝑥 + 𝑅𝑒−𝑖𝑘𝑥 𝑥 < 0

𝑇𝑒𝑖𝑘𝑥 𝑥 > 𝑎
. (30)

Scatter a wave of amplitude 𝐼 . 𝑅 is reflexion coefficient, 𝑇 is trans-
mission coefficient. For 1D solutions, probability current is constant
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since no𝜓 ′ term in TISE. Calculating current in both regions gives

|𝐼 |2 = |𝑅 |2 + |𝑇 |2 . (31)
Interpret |𝑅/𝐼 |2 as reflexion probability, |𝑇 /𝐼 |2 as transmission prob-
ability.

4.1 Example: Square Barrier

0 𝑎

𝐼𝑒𝑖𝑘𝑥

𝑅𝑒−𝑖𝑘𝑥 𝑇𝑒𝑖𝑘 (𝑥−𝑎)

I II III

𝑈

𝑉 (𝑥) =
{
𝑈 0 < 𝑥 < 𝑎

0 else
(32)

We choose the solution between 0 and 𝑎 carefully:

𝜓 (𝑥) =

𝐼𝑒𝑖𝑘𝑥 +𝑇𝑒−𝑖𝑘𝑥 𝑥 < 0

𝐴 cos 𝜆(𝑥 − 𝑎) + 𝐵 1
𝜆 sin 𝜆(𝑥 − 𝑎) 0 ⩽ 𝑥 ⩽ 𝑎

𝑅𝑒𝑖𝑘 (𝑥−𝑎) 𝑥 > 𝑎

(33)

Continuity of𝜓,𝜓 ′ at 𝑥 = 0, 𝑎 gives four equations:

𝐼 +𝑇 = 𝐴 cos 𝜆𝑎 − 𝐵 1
𝜆 sin 𝜆𝑎

𝑖𝑘 (𝐼 −𝑇 ) = 𝐴 sin 𝜆𝑎 + 𝐵 cos 𝜆𝑎

𝐴 = 𝑅

𝐵 = 𝑖𝑘𝑅

(34)

Solving these give the reflection and transmission coefficients,
which are too messy to give here.

5 Operators

Operators are linear functions on the space of states (endomorph-
isms). Examples:

Position is “multiply by x”

Momentum is p = −𝑖ℏ∇

Energy is the Hamiltonian, 𝐻 = 1
2𝑚𝑝2 +𝑉 .

Parity is 𝑃 , 𝑃 𝑓 (𝑥) = 𝑓 (−𝑥).
The expected value of an operator 𝐴 in state𝜓 is

〈𝐴〉𝜓 =
〈𝜓,𝐴𝜓 〉
〈𝜓,𝜓 〉 . (35)

The uncertainty or variance of an operator in state𝜓 is

(Δ𝐴)2𝜓 = 〈(𝐴 − 〈𝐴〉𝜓 )2〉𝜓 = 〈𝐴2〉𝜓 − 〈𝐴〉2𝜓 . (36)

Operators do not in general commute: 𝐴𝐵 ≠ 𝐵𝐴. The commut-
ator is a product that measures this: given 𝐴, 𝐵, their commutator
is the operator

[𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴. (37)
This has the following properties:

1. Linear: [𝜆𝐴 + 𝜇𝐵,𝐶] = 𝜆[𝐴,𝐶] + 𝜇 [𝐵,𝐶]

2. Antisymmetric: [𝐴,𝐴] = 0, so [𝐴, 𝐵] = −[𝐵,𝐴]

3. Leibniz: [𝐴, 𝐵𝐶] = 𝐵 [𝐴,𝐶] + [𝐴, 𝐵]𝐶 .
The basic comutation relation (CR) in quantum mechanics is

[𝑥, 𝑝] = 𝑖ℏ. (38)

5.1 Eigenvalues and Eigenstates

If𝜓 ≠ 0 and
𝐴𝜓 = 𝜆𝜓, (39)

𝜆 is called an eigenvalue,𝜓 the corresponding eigenstate. When we
solve TISE, we find eigenvalues and eigenstates of 𝐻 .
We have the usual results: for Hermitian operators,

1. Eigenvalues are real,

2. Eigenstates with different eigenvalues are orthogonal.

3. We also assume that the normalised eigenstates span the space
of wavefunctions, so we can write

𝜓 =
∑
𝜆,𝑛

〈𝑒𝜆,𝑛,𝜓 〉𝑒𝜆,𝑛 (40)

with 𝑒𝜆,𝑛 the normalised eigenstates with eigenvalue 𝜆.

𝐴 and 𝐵 have simultaneous eigenstates (that is, 𝜓 satisfying
𝐴𝜓 = 𝜆𝜓 , 𝐵𝜓 = 𝜇𝜓 ) if and only if [𝐴, 𝐵] = 0.

5.2 Uncertainty Principle

If two operators do not commute, we cannot expect to measure
both exactly. This is quantified in an uncertainty principle: Let𝐴, 𝐵
be Hermitian. Then taking 𝐶 = 𝐴 + 𝑖𝜆𝐵, 𝜆 ∈ R,

𝐶†𝐶 = 𝐴2 + 𝜆2𝐵2 + 𝜆𝑖 [𝐴, 𝐵] . (41)

The first three are Hermitian, so 𝑖 [𝐴, 𝐵] is also Hermitian. We have

0 ⩽ 〈𝐶𝜓,𝐶𝜓 〉 = 〈𝜓,𝐶†𝐶𝜓 〉
= 〈𝐴2〉𝜓 + 𝜆2〈𝐵2〉𝜓 + 𝜆〈𝑖 [𝐴, 𝐵]〉𝜓 .

For this to always be nonnegative, can have at most one real root,
so discriminant gives

〈𝐴2〉𝜓 〈𝐵2〉𝜓 ⩾ 1
4 (〈𝑖 [𝐴, 𝐵]〉𝜓 )

2 . (42)

This works for any 𝐴, 𝐵, so if we apply it to �̃� = 𝐴 − 〈𝐴〉𝜓 and
�̃� = 𝐵 − 〈𝐵〉𝜓 , we find [�̃�, �̃�] = [𝐴, 𝐵] and hence

(Δ𝐴)𝜓 (Δ𝐵)𝜓 ⩾ 1
2

��〈[𝐴, 𝐵]〉𝜓 �� . (43)

Most famous is Heisenberg’s uncertainty principle from applying
this to (38),

(Δ𝑥)(Δ𝑝) ⩾ 1
2ℏ. (44)

5.3 Heisenberg and Ehrenfest

Heisenberg equation We can determine the time evolution of the
expectation of an operator using the SE:

𝑑

𝑑𝑡
〈𝐴〉𝜓 =

𝑑

𝑑𝑡

ˆ
𝜓𝐴𝜓 =

ˆ
(𝜕𝑡𝜓𝐴𝜓 +𝜓𝐴𝜕𝑡𝜓 +𝜓 (𝜕𝑡𝐴)𝜓 )

= 〈𝜕𝑡𝜓,𝐴𝜓 〉 + 〈𝜓,𝐴𝜕𝑡𝜓 〉 + 〈𝜕𝑡𝐴〉𝜓
= 〈 1

𝑖ℏ𝐻𝜓,𝐴𝜓 〉 + 〈𝜓,𝐴 1
𝑖ℏ𝐻𝜓 〉 + 〈𝜕𝑡𝐴〉𝜓

=
1
𝑖ℏ

〈[𝐴,𝐻 ]〉𝜓 + 〈𝜕𝑡𝐴〉𝜓

Ehrenfest’s theorem Two specific examples are x and p: we have

𝑑

𝑑𝑡
〈x〉𝜓 =

1
𝑖ℏ

〈[x, 𝐻 ]〉𝜓 =
1

2𝑚𝑖ℏ
〈[x, 𝑝2]〉𝜓 =

1
𝑚
〈p〉𝜓 (45)

𝑑

𝑑𝑡
〈p〉𝜓 =

1
𝑖ℏ

〈[x, 𝐻 ]〉𝜓 = 〈[p,𝑉 (𝑥)]〉𝜓 = 〈−∇𝑉 〉𝜓 . (46)

so “on average” the classical equations ¤x = p/𝑚, ¤p = −∇𝑉 are
satisfied by the system.
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6 Postulates ofQuantum Mechanics

States The state of the system is described by vector𝜓 in a Hilbert
spaceH .

Observables To each observable quantity𝐴 (position, momentum,
angular momentum, energy, charge, parity, &c.) there cor-
responds a Hermitian operator 𝐴 acting on H , although we
write 𝐴 for both.

Probability The probability of measuring 𝜓 as being in state 𝜙 is
|〈𝜙,𝜓 〉|2 /(〈𝜙, 𝜙〉〈𝜓,𝜓 〉). After the system is measured to be
in state 𝜙 , it remains in 𝜙 . In particular, the only measure-
able values of an observable 𝐴 are given by the eigenvalues
of the operator 𝐴; when we measure 𝐴 has value 𝑎, state of
system becomes an eigenstate of 𝐴 with eigenvalue 𝑎.

Average The expected value of 𝐴 in state𝜓 is 〈𝜓,𝐴𝜓 〉/〈𝜓,𝜓 〉.

Time evolution The vector evolves via the Schrödinger equation.
𝑖ℏ𝜕𝑡𝜓 = 𝐻𝜓 .

7 Three Dimensions

(In this section we use summation convention throughout.)
In 3D, CRs between position and momentum are

[𝑥𝑖 , 𝑥 𝑗 ] = 0, [𝑝𝑖 , 𝑝 𝑗 ] = 0, [𝑥𝑖 , 𝑝 𝑗 ] = 𝑖ℏ𝛿𝑖 𝑗 .

7.1 Angular Momentum

In CM angular momentum is defined as

𝐿𝑖 = (x × p)𝑖 = 𝜀𝑖 𝑗𝑘𝑥 𝑗𝑝𝑘 . (47)

This contains no 𝑥𝑖𝑝𝑖 terms, so order of operators does not matter
and we take this as QM definition. Components satisfy the CRs

[𝐿𝑖 , 𝐿 𝑗 ] = 𝑖ℏ𝜀𝑖 𝑗𝑘𝐿𝑘 . (48)

OTOH, the total angular momentum 𝐿2 = 𝐿𝑖𝐿𝑖 commutes with the
individual components:

[𝐿2, 𝐿 𝑗 ] = 0, (49)

so can find simultaneous eigenfunctions of 𝐿2 and 𝐿2 (spherical
harmonics, § 7.3).

7.2 Radial Potentials

The relationship between 𝑝2 and 𝐿2 is

𝑝2 = −ℏ2∇2 = −ℏ2 1
𝑟
𝜕2𝑟 𝑟 +

𝐿2

𝑟2
, (50)

so
𝐿2 =

1
sin𝜃

𝜕𝜃 sin𝜃 𝜕𝜃 + 1

sin2 𝜃
𝜕2𝜑 , 𝐿3 = −𝑖ℏ𝜕𝜑 . (51)

If 𝑉 = 𝑉 (𝑟 ), can separate variables in TISE as 𝜒 (𝑟, 𝜃, 𝜑) =
𝑅(𝑟 )𝑌 (𝜃, 𝜑). Then iff 𝐿2𝑌 = ℏ2ℓ (ℓ + 1)𝑌 , have radial equation

− ℏ2

2𝜇
1
𝑟
𝜕2𝑟 𝑟𝑅 +

(
𝑉 (𝑟 ) + ℏ2ℓ (ℓ + 1)

𝑟2

)
𝑅 = 𝐸𝑅. (52)

Writing 𝜒 = 𝑟𝑅 turns this into a 1D TISE with modified potential,

− ℏ2

2𝜇
𝜒 ′′ +

(
𝑉 (𝑟 ) + ℏ2ℓ (ℓ + 1)

𝑟2

)
𝜒 = 𝐸𝜒, (53)

where 𝜒 is must be odd so 𝑅 is regular at 𝑟 = 0.
Thus a sufficiently shallow 3D finite spherical well has no bound

state. (See § 2.2)

7.3 Spherical Harmonics

Spherical harmonics 𝑌𝑚ℓ (𝜃, 𝜑) are simultaneous eigenfunctions of
𝐿2 and 𝐿3:

𝐿2𝑌𝑚ℓ = ℏ2ℓ (ℓ + 1)𝑌𝑚ℓ , 𝐿3𝑌
𝑚
ℓ = ℏ𝑚𝑌𝑚ℓ . (54)

Separating variables gives

− 1
sin𝜃

(
sin𝜃Θ′(𝜃 )

) ′ + 𝑚2

sin2 𝜃
Θ(𝜃 ) = ℓ (ℓ + 1)Θ(𝜃 ) (55)

−𝑖Φ′ =𝑚Φ. (56)

Φ equation gives Φ(𝜑) = 𝑒𝑖𝑚𝜑 . 𝑚 must be an integer for this to be
continuous. Changing variables 𝑥 = cos𝜃 in the Θ equation, then
𝑑
𝑑𝑥 = sin𝜃 𝑑

𝑑𝜃 , so

−
(
(1 − 𝑥2)Θ′(𝑥)

) ′
+ 𝑚2

1 − 𝑥2
Θ(𝑥) = ℓ (ℓ + 1)Θ(𝑥),

the associated Legendre equation. The spherical harmonics are thus

𝑌𝑚ℓ (𝜃, 𝜙) =

√
2ℓ + 1
4𝜋

(ℓ −𝑚)!
(ℓ +𝑚)! 𝑃

𝑚
ℓ (cos𝜃 )𝑒𝑖𝑚𝜑 , (57)

where ℓ ∈ {0, 1, 2, . . . },𝑚 ∈ {−ℓ,−ℓ + 1, . . . , ℓ}.
They are normalised so
ˆ 2𝜋

0

ˆ 𝜋

0
𝑌𝑚ℓ (𝜃, 𝜑)𝑌𝑚′

ℓ′ (𝜃, 𝜑) sin𝜃 𝑑𝜃 𝑑𝜙 = 𝛿ℓℓ′𝛿𝑚𝑚′ (58)

8 Hydrogen Atom

Here have potential

𝑉 (𝑟 ) = − 𝑒2

4𝜋𝜖0𝑟
. (59)

Making non-dimensional substitution 𝑦 = 𝑟/𝑟0, 𝜈2 = −2𝑚𝐸/ℏ2 ,
where 𝑟0 = 4𝜋𝜀0ℏ2/(𝑚𝑒𝑒

2) is the Bohr radius, TISE becomes

− 1
𝑦

(
𝑑

𝑑𝑦

)2
𝑦𝑅 +

(
ℓ (ℓ + 1)

𝑦2
− 2
𝑦

)
𝑅 = −𝜈2𝑅. (60)

For large 𝑦, equation looks like 𝑅′′ = −𝜈2𝑅, so normalisable solu-
tion looks like 𝑒−𝜈𝑦 . For small 𝑦, equation looks like
(𝑦𝑅)′′ = ℓ (ℓ + 1)/𝑦, which has solutions 𝑦ℓ and 𝑦−ℓ−1. Choos-
ing regular one, and making the substitution 𝑅(𝑦) = 𝑦ℓ𝑒−𝜈𝑦 𝑓 (𝑦),
equation becomes

𝑦𝑓 ′′ + ((2ℓ + 1) + 1 − 2𝜈𝑦) 𝑓 ′ + 2(1 − (ℓ + 1)𝜈) 𝑓 = 0. (61)

Changing variables to 𝜌 = 2𝜈𝑦 gives

𝜌 𝑓 ′′ + ((2ℓ + 1) + 1 − 𝜌) 𝑓 + 2(𝜈−1 − ℓ − 1) 𝑓 ,

the associated Legendre equationwith 𝛼 = 2ℓ+1, 𝑛 = 𝜈−1−ℓ−1. Has
normalisable polynomial solutions when 𝜈 = (𝑛+ ℓ)−1, 𝑛 = 1, 2, . . ..
Energy levels are

𝐸𝑁 = − ℏ2

2𝜇𝑟20 (𝑛 + ℓ)2
= − 𝜇𝑒4

32𝜋2𝜖20ℏ
2

1

𝑁 2 , (62)

and corresponding eigenfunctions are

𝜒𝑛ℓ𝑚 (𝑥) =

√(
2
𝑛𝑟0

)3 (𝑛 − ℓ − 1)!
2𝑛(𝑛 + ℓ)! 𝜌

ℓ𝐿2ℓ+1𝑛−ℓ−1 (𝜌)𝑒
−𝜌/2𝑌𝑚ℓ (𝜃, 𝜑),

(63)
where 𝑁 = 𝑛 + ℓ ∈ {1, 2, . . . }, ℓ ∈ {0, 1, . . . , 𝑁 − 1} and 𝑚 ∈
{−ℓ,−ℓ + 1, . . . , ℓ}. Degeneracy of 𝑁 th level is 𝑁 2.
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