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Abbreviations: CM = Classical Mechanics, QM = antum Mechanics, CR = commutation relation, SE = Schrödinger equation, TISE = time-
independent Schrödinger equation

 Wave Meanics

Main idea: System is described by a C-valued wavefunionψ (x , t).
Time evolution is described by the Time-dependent Schrödinger
equation:

iℏ∂tψ = Hψ = − ℏ
2

2m
∇2ψ +V (x)ψ ()

Separation of variables ψ (x , t) = e−iEt χ (x) gives Time-
independent Schrödinger equation (TISE):

− ℏ
2

2m
∇2ψ +V (x)ψ = Eψ ()

These equations are linear, and in fact QM is entirely linear.
The superposition principle says if ψ ,φ are states, so is aψ + bφ for
a,b ∈ C. The space of wavefunctions is given the inner product

⟨φ,ψ ⟩ =
ˆ
R
φ(x)ψ (x)dx ; ()

ψ is normalised if ⟨ψ ,ψ ⟩ = 1.

. Probability

If the system is in the state with wavefunction ψ , the probability
that we measure it to be in the state with wavefunction φ is

|⟨φ,ψ ⟩|2
⟨φ,φ⟩⟨ψ ,ψ ⟩

Given this, the overall phase of the wavefunction has no physical
impact. The probability of finding the particle in an infinitesimal
interval dx is |ψ (x )|2

⟨ψ ,ψ ⟩ dx = ρ(x)dx . The probability density ρ satis-
fies the continuity equation

∂t ρ + ∇ · j = 0, ()

where j is the probability current

j = ℏ

2im
(
ψ∇ψ −ψ∇ψ

)
=
ℏ

m
ℑ(ψ∇ψ ). ()

. Plane Wave and Wavepaet

SE for a free particle is

iℏ∂tψ = −
ℏ2

2m
∇2ψ . ()

A (non-normalisable) solution is

ψ (x , t) = exp (ik · x − iωt), ()

withω = ℏk2/(2m). Interpreted as a particle beam or a plane wave.
The de Broglie relations for a matter wave are

E = ℏω, p = ℏk. ()

These imply that this is an energy eigenstate with
E = p2/(2m), as we expect classically.
Given a Gaussian initial state ψ (x , 0) = (aπ )−1/4e−x

2/(2a), one
finds that it evolves into

ψ (x , t) =
( a
π

)1/4 1
√
a + iℏt/m

exp
(
− x2

2(a + iℏt/m)
)
. ()

. Galilean Transformation

Given a solution Ψ(x , t), we can consider a Galilean transforma-
tion t ′ = t , x ′ = x − ut . Then looking for solutions of the form
Ψ(x − ut , t)eiα (x,t ), which all have the same probability density,
we find

Ψ(x − ut , t)eim(ux−u2t/2)/ℏ ()

is also a solution.

 Example Potentials

Anormalisable solution of the TISEwith a givenV is called a bound
state of V . In this section we find the bound states of some simple
potentials.

. Infinite Square Well

0 a
x

V (x) =
0 0 ⩽ x ⩽ a

∞ else
()

Outside [0,a], wavefunction must be zero (or TISE makes no
sense). Inside, have

− ℏ
2

2m
χ ′′ = Eχ , ()

which is solved by χ (x) = A sinkx + B coskx , k = 2mE/ℏ2.
Continuity of χ at x = 0 =⇒ B = 0, and continuity at
x = a =⇒ k = 0,π/a, 2π/a, . . .. Hence energy levels are

En =
n2ℏ2π2

2ma2 , n = 1, 2, · · · ()

with normalised eigenfunctions (note can’t have n = 0 to have a
normalisable wavefunction)

χn(x) =
√

2
a

sin
(nπx

a

)
. ()

This is the easiest way, but one may also look at odd and even solu-
tions in the symmetric box on [−a/2,a/2].
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. Finite Square Well

−1
2a

1
2a

0
x

U

V (x) =
0 −a/2 ⩽ x ⩽ a/2
U else

()

Outside, have

− ℏ
2

2m
χ ′′ = (E −V )χ ()

Need exponential decay here to be normalisable, so take
2m(E −U )/ℏ2 = −α2 < 0. We assume that α ,k > 0. Potential is
unchanged under parity P : x 7→ −x , so can look solutions with
definite parity: even and odd.

Even Solution has form

χ (x) =

Aeλ(x+a/2) x < −a/2
B coskx |x | ⩽ a/2
Ae−λ(x−a/2) x > a/2

()

Continuity of χ , χ ′ at x = a/2 gives

A − B cos 1
2ka = 0

−λA + kB sin 1
2ka = 0.

()

If we write this as a matrix equation for A,B, to have a nonzero
solution to the original equations, we need the determinant to van-
ish. This gives

k sin 1
2ka − λ cos 1

2ka = 0. ()

So have two conditions on k and λ. Writing α = ka/2, β = λa/2,
we have

β = α tanα , α2 + β2 =
8mU

a2ℏ2
()

Plotting both of these conditions shows that there is always a solu-
tion. TakingU → ∞ recovers the infinite well’s even solutions.

1
2π π 3

2π 2π 5
2π 3π

√
8mU
aℏ

E0

E2

α

β

Odd Solution has form

χ (x) =

−Ae−λ(x−a/2) x < −a/2
B sinkx |x | ⩽ a/2
Ae−λ(x−a/2) x > a/2

()

Continuity of χ , χ ′ at x = a/2 gives

A − B sin 1
2ka = 0

−λA − kB cos 1
2ka = 0.

()

If we write this as a matrix equation for A,B, to have a nonzero
solution to the original equations, we need the determinant to van-
ish. This gives

− k cos 1
2ka − λ sin 1

2ka = 0. ()

Again have two conditions on k and λ. In the same notation as
above, we have

β = −α cotα , α2 + β2 =
8mU

a2ℏ2
()

Now, there is only a solution if 32mU /a2ℏ2π2 ⩾ 1. Again, taking
U → ∞ recovers the infinite well’s odd solutions.

1
2π π 3

2π 2π 5
2π 3π

√
8mU
aℏ E1

E3
α

β

So the system has a finite number of bound states, with energies
satisfying the inequalities

n2ℏ2π2

2ma2 < En <
(n + 1)2ℏ2π2

2ma2 . ()

 Harmonic Oscillator

TISE is
− ℏ

2

2m
χ ′′ +

1
2
mω2x2χ = Eχ . ()

Nondimensional change of variables y =
√
mω/ℏx , E = 2E/(ℏω)

gives

− d2χ

dx2 + y
2χ = Eχ . ()

If E = 1, has solution χ0(y) = e−y
2/2. Expect all solutions to act

like this due to dominance of y2χ term. Substituting
χ (y) = f (y)e−y2/2, find the Hermite equation,

d2 f

dy2 − 2y
d f

dy
+ (E − 1)f = 0. ()

Method of Frobenius gives either nonterminating series that are
asymptotic to ey

2 as |y| → ∞, or if E = 2n + 1, n = 0, 1, . . ., the
Hermite polynomial of degree n. Hence the bound-state energies
are En = (n + 1/2)ℏω, and the corresponding normalised eigen-
states are

χn(y) = π−1/4
√

2nn!
Hn (y)e−y2/2. ()

 Scattering

Suppose V (x) = 0 outside [0,a]. We again take k > 0,
k2 = 2mE/ℏ2. We look for solutions of the form

ψ (x) =
Ie

ikx +Te−ikx x < 0
Reikx x > a

. ()

Scatter a wave of amplitude I . R is reflexion coefficient, T is scat-
tering coefficient. For D solutions, probability current is constant





since noψ ′ term in TISE. Calculating current in both regions gives

|I |2 = |R|2 + |T |2 . ()
Interpret |R/I |2 as reflexion probability, |T /I |2 as transmission prob-
ability.

. Example: Square Barrier

0 a

eikx

Re−ikx Teik (x−a)

I II III

U

V (x) =
U 0 < x < a

0 else
()

We choose the solution between 0 and a carefully:

ψ (x) =

Ieikx +Te−ikx x < 0
A cos λ(x − a) + B 1

λ sin λ(x − a) 0 ⩽ x ⩽ a

Reik (x−a) x > a

()

Continuity ofψ ,ψ ′ at x = 0,a gives four equations:

I +T = A cos λa − B 1
λ sin λa

ik(I −T ) = A sin λa + B cos λa
A = R

B = ikR

()

Solving these give the reflection and transmission coefficients,
which are too messy to give here.

 Operators

Operators are linear functions on the space of states (endomorph-
isms). Examples:

Position is “multiply by x”

Momentum is p = −iℏ∇

Energy is the Hamiltonian, H = 1
2mp2 +V .

Parity is P , P f (x) = f (−x).
The expeed value of an operator A in stateψ is

⟨A⟩ψ = ⟨ψ ,Aψ ⟩
⟨ψ ,ψ ⟩ . ()

The uncertainty or variance of an operator in stateψ

(∆A)2ψ = ⟨(A − ⟨A⟩ψ )2⟩ψ = ⟨A2⟩ψ − ⟨A⟩2ψ . ()

Operators do not in general commute: AB , BA. The commut-
ator is a product that measures this: given A,B, their commutator
is the operator

[A,B] = AB − BA. ()
This has the following properties:

. Linear: [λA + µB,C] = λ[A,C] + µ[B,C]
. Antisymmetric: [A,A] = 0, so [A,B] = −[B,A]
. Leibniz: [A,BC] = B[A,C] + [A,B]C .
The basic commutator in quantum mechanics is

[x ,p] = iℏ. ()

. Eigenvalues and Eigenstates

Ifψ , 0 and
Aψ = λψ , ()

λ is called an eigenvalue,ψ the corresponding eigenstate. When we
solve TISE, we find eigenvalues and eigenstates of H .
We have the usual results: for Hermitian operators,

. Eigenvalues are real,

. Eigenstates with different eigenvalues are orthogonal.

. We also assume that the normalised eigenstates span the space
of wavefunctions, so we can write

ψ =
∑
λ,n

⟨eλ,n ,ψ ⟩eλ,n ()

with eλ,n the normalised eigenstates with eigenvalue λ.

A and B have simultaneous eigenstates (that is, ψ satisfying
Aψ = λψ , Bψ = µψ ) if and only if [A,B] = 0.

. Uncertainty Principle

If two operators do not commute, we cannot expect to measure
both exactly. This is quantified in an uncertainty principle: LetA,B
be Hermitian. Then taking C = A + iλB, λ ∈ R,

C†C = A2 + λ2B2 + λi[A,B]. ()

The first three are Hermitian, so i[A,B] is also Hermitian. We have

0 ⩽ ⟨Cψ ,Cψ ⟩ = ⟨ψ ,C†Cψ ⟩
= ⟨A2⟩ψ + λ2⟨B2⟩ψ + λ⟨i[A,B]⟩ψ .

For this to always be nonnegative, can have at most one real root,
so discriminant gives

⟨A2⟩ψ ⟨B2⟩ψ ⩾ 1
4 (⟨i[A,B]⟩ψ )2. ()

This works for any A,B, so if we apply it to Ã = A − ⟨A⟩ψ and
B̃ = B − ⟨B⟩ψ , we find [Ã, B̃] = [A,B] and hence

(∆A)ψ (∆B)ψ ⩾ 1
2
���⟨[A,B]⟩ψ ��� . ()

Most famous is Heisenberg’s uncertainty principle,

(∆x)(∆p) ⩾ 1
2ℏ. ()

. Ehrenfest and Heisenberg

We can determine the time evolution of the expectation of an op-
erator using the SE:

d

dt
⟨A⟩ψ = d

dt

ˆ
ψAψ =

ˆ
(∂tψAψ +ψA∂tψ +ψ (∂tA)ψ )

= ⟨∂tψ ,Aψ ⟩ + ⟨ψ ,A∂tψ ⟩ + ⟨∂tA⟩ψ
= ⟨ 1

iℏHψ ,Aψ ⟩ + ⟨ψ ,A 1
iℏHψ ⟩ + ⟨∂tA⟩ψ

=
1
iℏ
⟨[A,H ]⟩ψ (t ) + ⟨∂tA⟩ψ

Two specific examples are x and p: we have

d

dt
⟨x⟩ψ = 1

iℏ
⟨[x,H ]⟩ψ = 1

2miℏ
⟨[x,p2]⟩ψ = 1

m
⟨p⟩ψ ()

d

dt
⟨p⟩ψ = 1

iℏ
⟨[x,H ]⟩ψ = ⟨[p,V (x)]⟩ψ = ⟨−∇V ⟩ψ . ()





 Postulates ofantum Meanics

States The state of the system is described by vectorψ in a Hilbert
spaceH .

Observables To each observable quantityA (position, momentum,
angular momentum, energy, charge, parity, &c.) there cor-
responds a Hermitian operator Â acting onH , although we
write A for both.

Probability The probability of measuring ψ as being in state φ is
|⟨φ,ψ ⟩|2 /⟨φ,φ⟩⟨ψ ,ψ ⟩. After the system is measured to be in
state φ, it remains in φ. In particular, the only measureable
values of an observableA are given by the eigenvalues of the
operator Â; when we measure A has value a, state of system
becomes an eigenstate of Â with eigenvalue a.

Average The expected value of Â in stateψ is ⟨ψ , Âψ ⟩/⟨ψ ,ψ ⟩.
Time evolution The vector evolves via the Schrödinger equation.

iℏ∂tψ = Hψ .

 ree Dimensions

(In this section we use Einstein summation convention through-
out.)
In D, CRs between position and momentum are

[xi ,x j ] = 0, [pi ,pj ] = 0, [xi ,pj ] = iℏδi j .

. Angular Momentum

CM angular momentum is defined as

Li = (x × p)i = εi jkx jpk . ()

This contains no xipi terms, so order of operators does not matter
and we take this as QM definition. Components satisfy the CRs

[Li ,Lj ] = iℏεi jkLk . ()

OTOH, the total angular momentum L2 = LiLi commutes with the
individual components:

[L2,Lj ] = 0, ()

so can find simultaneous eigenfunctions of L2 and L2 (spherical
harmonics, § .).

. Radial Potentials

The relationship between p2 and L2 is

p2 = −ℏ2∇2 = −ℏ2 1
r
∂2
r r +

L2

r2 , ()

so
L2 =

1
sinθ

∂θ sinθ ∂θ +
1

sin2 θ
∂2
ϕ , L3 = −iℏ∂ϕ . ()

If V = V (r ), can separate variables in TISE as χ (r ,θ ,ϕ) =
R(r )Y (θ ,ϕ). Then iff L2Y = ℏ2ℓ(ℓ + 1)Y , have radial equation

− ℏ
2

2µ
1
r
∂2
r rR +

(
V (r ) + ℏ

2ℓ(ℓ + 1)
r2

)
R = ER. ()

Writing χ = rR turns this into a D TISE with modified potential,

− ℏ
2

2µ
χ ′′ +

(
V (r ) + ℏ

2ℓ(ℓ + 1)
r2

)
χ = Eχ , ()

where χ is must be odd so R is regular at r = 0.
Thus a sufficiently shallow D finite spherical well has no bound

state.

. Spherical Harmonics

Spherical harmonics Ym
ℓ
(θ ,ϕ) are simultaneous eigenfunctions of

L2 and L3:

L2Ymℓ = ℏ
2ℓ(ℓ + 1)Ymℓ , L3Y

m
ℓ = ℏmYmℓ . ()

Separating variables gives

− 1
sinθ

�
sinθΘ′(θ )�′ + m2

sin2 θ
Θ(θ ) = ℓ(ℓ + 1)Θ(θ ) ()

−iΦ′ =mΦ. ()

Φ equation gives Φ(ϕ) = eimϕ . m must be an integer for this to be
continuous. Changing variables x = cosθ in the Θ equation, then
d
dx = sinθ d

dθ , so

−
((1 − x2)Θ′(x)) ′ + m2

1 − x2 Θ(x) = ℓ(ℓ + 1)Θ(x),

the associated Legendre equation. The spherical harmonics are thus

Ymℓ (θ ,φ) =
√

2ℓ + 1
4π

(ℓ −m)!
(ℓ +m)!P

m
ℓ (cosθ )eimϕ , ()

where ℓ ∈ {0, 1, 2, . . . },m ∈ {−ℓ,−ℓ + 1, . . . , ℓ}.
They are normalised so
ˆ 2π

0

ˆ π

0
Ym
ℓ
(θ ,ϕ)Ym′ℓ′ (θ ,ϕ) sinθ dθ dφ = δℓℓ′δmm′ ()

 Hydrogen Atom

Here have potential

V (r ) = − e2

4πϵ0r
. ()

Making non-dimensional substitution y = r/r0, ν2 = −2mE/ℏ2 ,
where r0 = 4πε0ℏ2/(mee

2) is the Bohr radius, TISE becomes

− 1
y

(
d

dy

)2
yR +

(
ℓ(ℓ + 1)
y2 − 2

y

)
R = −ν2R. ()

For large y, equation looks like R′′ = −ν2R, so normalisable solu-
tion looks like e−νy . For small y, equation looks like
(yR)′′ = ℓ(ℓ + 1)/y, which has solutions yℓ and y−ℓ−1. Choos-
ing regular one, and making the substitution R(y) = yℓe−νy f (y),
equation becomes

y f ′′ + ((2ℓ + 1) + 1 − 2νy)f ′ + 2(1 − (ℓ + 1)ν)f = 0. ()

Changing variables to ρ = 2νy gives

ρ f ′′ + ((2ℓ + 1) + 1 − ρ)f + 2(ν−1 − ℓ − 1)f ,
the associated Legendre equationwithα = 2ℓ+1,n = ν−1−ℓ−1. Has
normalisable polynomial solutionswhenν = (n+ℓ)−1,n = 1, 2, . . ..
Energy levels are

EN = −
ℏ2

2µr2
0 (n + ℓ)2

= − µe4

32π2ϵ2
0ℏ

2
1
N 2 , ()

and corresponding eigenfunctions are

χnℓm (x) =
√(

2
nr0

)3 (n − ℓ − 1)!
2n(n + ℓ)! ρ

ℓL2ℓ+1
n−ℓ−1(ρ)e−ρ/2Ymℓ (θ ,ϕ),

()
where N = n + ℓ ∈ {1, 2, . . . }, ℓ ∈ {0, 1, . . . ,N − 1} and
m ∈ {−ℓ,−ℓ + 1, . . . , ℓ}. Degeneracy of N th level is N 2.


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