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Part I.
Finite-Dimensional Optimisation
and Convexity

1. Stationary Points in R𝑛

A function 𝑓 : R𝑛 → R is differentiable if there is a linear map 𝐿
so that

𝑓 (x + h) = 𝑓 (x) + 𝐿(h) + 𝑜 (‖h‖)
for ‖h‖ → 0. This linear map can be written as an inner product
with a vector ∇𝑓 (x), the gradient of 𝑓 .
A differentiable function 𝑓 : R𝑛 → R has a stationary point at

x if ∇𝑓 (x) = 0. x is a local minimum if 𝑓 is minimised by x in a
neighbourhood, and a global minimum if 𝑓 has its smallest value in
its whole domain at x. Exactly the same is said of maxima, where
the function is locally or globally largest.

First order necessary condition for a local extremum If 𝑓 is dif-
ferentiable, we must have ∇𝑓 (x) = 0 for x to be an extremum (or
e.g. for a minimum we could find a vector h with h · ∇𝑓 (x) < 0,
and by MVT, in any neighbourhood this gives a point y with
𝑓 (y)) < 𝑓 (x), contradicting the condition to be a local minimum).

Second-order sufficient condition for a minimum Suppose that
the Hessian ∇∇𝑓 (x) is nondegenerate. Then a sufficient condition
for a minimum is

v · (∇∇𝑓 (x)) · v > 0 (1)
for all v ≠ 0 (∇∇𝑓 (x) is positive-definite).
If 𝑓 has a maximum, −𝑓 has a minimum, so the Hessian has to

be negative-definite for a maximum.
One can prove this by using Taylor’s theorem: for small ‖h‖ > 0,

we have

𝑓 (x + h) − 𝑓 (x) = h · ∇𝑓 (x) + 1
2
h · (∇∇𝑓 (x)) · h + 𝑜 (‖h‖2),

and the first term has to be zero to avoid being negative. Then the
right-hand side is positive for small enough ‖h‖ > 0 provided that
the Hessian is positive-definite.

1.1. Convexity

A set 𝐴 ⊆ R𝑛 is called convex if (1− 𝑡)x + 𝑡y ∈ 𝐴 for each x, y ∈ 𝐴,
𝑡 ∈ (0, 1), i.e. the line segment joining x and y lies entirely in 𝐴.

𝑓 : 𝐴 → R is called convex if

𝑓 ((1 − 𝑡)x + 𝑡y) ⩽ (1 − 𝑡) 𝑓 (x) + 𝑡 𝑓 (y). (2)

for each x, y ∈ 𝐴, 𝑡 ∈ (0, 1). If we can replace ⩽ by <, 𝑓 is called
strictly convex. If −𝑓 is (strictly) convex, 𝑓 is (strictly) concave.

First-order convexity conditions Suppose 𝑓 is differentiable.
Then the following are equivalent:

1. 𝑓 (x) is convex,
2. 𝑓 (y) ⩾ 𝑓 (x) + (y − x) · ∇𝑓 (x),
3. (y − x) · (∇𝑓 (y) − ∇𝑓 (x)) ⩾ 0.

Proof. 1 =⇒ 2 Rearranging the definition of convexity, we have

𝑓 (y) ⩾ 𝑓 (x) + 𝑓 (x + 𝑡 (y − x)) − 𝑓 (x)
𝑡

Taking 𝑡 ↓ 0, the second term on the right-hand side tends to
(y − x) · ∇𝑓 (x), which is 2.

2 =⇒ 1 Let z = (1 − 𝑡)x + 𝑡y. Then applying 2 twice, we have

𝑓 (x) ⩾ 𝑓 (z) + (x − z) · ∇𝑓 (z)
𝑓 (y) ⩾ 𝑓 (z) + (y − z) · ∇𝑓 (z),

and adding (1− 𝑡) of the first to 𝑡 of the second gives the convexity
condition (the gradient terms cancel).
2 =⇒ 3 We have, by swapping 𝑥 and 𝑦, the inequalities

𝑓 (y) − 𝑓 (x) ⩾ (y − x) · ∇𝑓 (x)
𝑓 (x) − 𝑓 (y) ⩾ (x − y) · ∇𝑓 (y)

Adding and rearranging gives 3.
3 =⇒ 2 The Fundamental Theorem of Calculus gives

𝑓 (x + v) − 𝑓 (x) =
ˆ 1

0

𝑑

𝑑𝑡
𝑓 (x + 𝑡v) 𝑑𝑡

=
ˆ 1

0
v · ∇𝑓 (x + 𝑡v) 𝑑𝑡

=
ˆ 1

0
v ·

(
∇𝑓 (x + 𝑡v) − ∇𝑓 (x)

)
𝑑𝑡 + v · ∇𝑓 (x)

⩾ v · ∇𝑓 (x),

by applying 3 with y = x + 𝑡v; this is (2). □

2 implies that 𝑓 lies above its tangent plane, (given on the right-
hand side). This also implies that any local minimum of a convex
function is a global minimum.
In 1D, 3 states that the derivative is nondecreasing.

Second-order convexity condition If 𝑓 is twice-differentiable, it
is convex ⇐⇒ ∇∇𝑓 (x) is nonnegative-definite.

Proof. ⇐= Starting from the LHS of 3 of the previous result and
applying the FToC again,

v · (∇𝑓 (x + v) − ∇𝑓 (x)) =
ˆ 1

0

𝑑

𝑑𝑡
v · ∇𝑓 (x + 𝑡v) 𝑑𝑡

=
ˆ 1

0
v · ∇∇𝑓 (x + 𝑡v) · v𝑑𝑡 ⩾ 0

if the condition on ∇∇𝑓 holds, and hence we have 3, and 𝑓 is con-
vex.
=⇒ Taking 𝑡 > 0 and setting 𝑦 = x + 𝑡v in 3 again,

0 ⩽
v · (∇𝑓 (x + 𝑡v) − ∇𝑓 (x))

𝑡
,

and then taking the limit as 𝑡 ↓ 0 gives the result, since the right-
hand side tends to v · ∇∇𝑓 (x) · v. □

Strict convexity does not imply that ∇∇𝑓 (x) > 0: e.g. 𝑥4.

1 © 2018 R Chapling



1.2. Variation with Constraints

Suppose we want to minimise or maximise 𝑓 (x) subject to some
constraints on the values of x, g(x) = 0: a typical example would
be to demand that ‖x‖ = 1. We start with one condition, 𝑔(x) = 0.
If there were no constraints, we would look for ∇𝑓 (x) = 0, so

that the function does not change to first order no matter which
direction we go. Adding a constraint generally restricts us to work-
ing on a hypersurface represented by 𝑔(x) = 0. This limits the
directions that we can move to those that are perpendicular to the
normal of this hypersurface, viz. those for which v · ∇𝑔(x) = 0.
Therefore, while we may have ∇𝑓 (x) = 0, this is no longer the
only possibility: also available is ∇𝑓 (x) being parallel to ∇𝑔(x).
Therefore the equations we have to solve are

∇𝑓 (x) = 𝜆∇𝑔(x) (3)
𝑔(x) = 0. (4)

We can put these together by adding an extra part to the function
we are trying to extremise:

𝐿(x, 𝜆) = 𝑓 (x) − 𝜆𝑔(x), (5)

the Lagrangian, and now we have an unconstrained minimisation
problem with one extra variable. 𝜆 is called the Lagrange multi-
plier ; whether we use +𝜆𝑔(x) or −𝜆𝑔(x) is unimportant theoret-
ically. Now, differentiating with respect to x gives the gradient
equation, and differentiating wrt 𝜆 gives the constraint equation;
we then solve the equations to find x, and then determinewhat sort
of stationary point we have. 𝜆 appears to become superfluous, but
often has a physical interpretation, like tension holding the point
to the surface. Also, when the constraints are satisfied, we obvi-
ously have 𝐿(x, 𝜆) = 𝑓 (x): the point of the Lagrangian is that it
allows us to express the gradient condition easily.
If there are more constraints, we simply augment 𝑓 to in-

clude one Lagrange multiplier for each constraint, turning it into
𝐿(x,λ) = 𝑓 (x) − λ · g(x): the idea then becomes that ∇𝑓 (x) lives
in the subspace spanned by the normals.

2. Legendre Transform

We assume in this section that 𝑓 : 𝐴 → R is differentiable. The Le-
gendre transform allows us to convert a function of 𝑥 into a function
of 𝑝 , its gradient. It is given by

𝑓 ∗ (𝑝) = sup
𝑥 ∈𝐴

(𝑝𝑥 − 𝑓 (𝑥)) . (6)

We write𝐴∗ for the set of 𝑝 for which this is finite. It is easy to see
that 𝐴∗ is convex, and on 𝐴∗, 𝑓 ∗ is convex, since

𝑓 ∗
(
𝑡𝑝 + (1 − 𝑡)𝑞

)
= sup

𝑥 ∈𝐴

(
(𝑡𝑝 + (1 − 𝑡)𝑞)𝑥 − 𝑓 (𝑥)

)
⩽ 𝑡 sup

𝑥 ∈𝐴
(𝑝𝑥 − 𝑓 (𝑥)) + (1 − 𝑡) sup

𝑥 ∈𝐴
(𝑞𝑥 − 𝑓 (𝑥))

= 𝑡 𝑓 ∗ (𝑝) + (1 − 𝑡) 𝑓 ∗ (𝑞) .

(Notice also that the inequality also implies that the set where 𝑓 ∗ is
finite is convex, since it shows that 𝑓 ∗ (𝑡𝑝+ (1−𝑡)𝑞) < ∞whenever
the endpoints are.)
If 𝑓 is differentiable, we actually find 𝑓 ∗ by differentiating,

𝑑

𝑑𝑥
(𝑝𝑥 − 𝑓 (𝑥)) = 𝑝 − 𝑓 ′(𝑥) .

For this to be a maximum, we must have 𝑝 = 𝑓 ′(𝑥). This relation-
ship is invertible if and only if 𝑓 ′ is increasing, i.e. 𝑓 is convex, and
we then find

𝑓 ∗ (𝑝) = 𝑝 (𝑓 ′)−1 (𝑝) − 𝑓
(
(𝑓 ′)−1 (𝑝)

)
.

For example, if 𝑓 (𝑥) = 𝑎𝑥2/2, we have 𝑝 − 𝑎𝑥 = 0 for the min-
imum, so the closest point has 𝑥 = 𝑝/𝑎, and substituting this in
gives 𝑓 ∗ (𝑝) = 1

2𝑎𝑝
2.

Geometric interpretation Draw the graph of 𝑓 and a line of
gradient 𝑝 that touches the graph of 𝑓 :

𝑓 ′(𝑥) = 𝑝𝑓 (𝑥)

𝑝𝑥

𝑥
𝑓 (𝑥) − 𝑝𝑥

So −𝑓 ∗ (𝑝) is the smallest 𝑦-intercept of a line that intersects
the graph of 𝑓 and has gradient 𝑝 . (Or equally, the largest the
𝑦-intercept can be so that the graph of 𝑓 has no part below the
line.)1

Inversion It is easy to show that 𝑓 ∗∗ (𝑥) ⩽ 𝑓 (𝑥), but this can be
strengthened to:

Theorem. 𝑓 ∗∗ (𝑥) = 𝑓 (𝑥) if and only if 𝑓 is convex.

Proof. Since 𝑓 ∗∗ is convex, it is clear that if 𝑓 itself is not convex,
it can’t be equal to 𝑓 ∗∗. It remains to check the equality when 𝑓 is
convex.
We have

𝑓 ∗∗ (𝑥) = sup
𝑝∈𝐴∗

(𝑝𝑥 − 𝑓 ∗ (𝑝)) = sup
𝑝∈𝐴∗,𝛼⩽−𝑓 ∗ (𝑝)

(𝑝𝑥 + 𝛼)

The latter is a supremum over the linear functions, and we saw
above that −𝑓 ∗ (𝑝) is the largest value of the 𝑦-intercept for which
the graph of 𝑓 has no part below the line. So 𝑓 ∗∗ (𝑥) is the largest
value assumed by a linear function of this kind at 𝑥 . If 𝑓 is convex,
this is 𝑓 (𝑥), because we can just choose the tangent.2 □

In fact, 𝑓 ∗∗ is the convex hull of 𝑓 : this is exactly the supremum
of all the linear functions that lie below the graph of 𝑓 ; it is also
the largest convex function that is pointwise smaller than 𝑓 .

Young’s inequality By the definition of the Legendre transform,
it is clear that for any 𝑥 and 𝑝 ,

𝑓 (𝑥) + 𝑓 ∗ (𝑝) ⩾ 𝑝 · 𝑥 . (7)

As a special case, we have

𝑎

2
𝑥2 + 1

2𝑎
𝑝2 ⩾ 𝑝 · 𝑥, (8)

which is sometimes called the Peter–Paul inequality.
1This interpretation can be adapted to non-differentiable 𝑓 : we consider the set lines of gradient 𝑝 , and find the lowest one that intersects 𝑓 (or equivalently, the highest one with
no part of 𝑓 ’s graph below it). The 𝑦-intercept of this line is the Legendre transform of 𝑓 .

2Were 𝑓 not differentiable, we instead need to take a support line at (𝑥, 𝑓 (𝑥)) , which is exactly a line so that the graph of 𝑓 lies wholly to one side of it, apart from the point
(𝑥, 𝑓 (𝑥)) , which lies on it. We don’t do enough convex analysis in this course to show that these always exist for convex functions, though, hence the restriction noted at the
beginning of the section.
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Thermodynamics Thermodynamics is frequently concerned
with finding properties of a system based on varying some quant-
ities while keeping others constant. What makes it exceptional
is that most variables depend on others in complicated ways that
make it difficult to talk about things consistently. The mathemat-
ical way around this is to define different thermodynamic poten-
tials, with different explicit dependence on variables: these are
chosen based on the type of equilibrium the system relaxes into
when we hold such things constant.
• We start with the internal energy 𝑈 (𝑆,𝑉 ) of the system, which is
given as a function of the entropy 𝑆 (a measure of the disorder of
the system), and the volume 𝑉 . We define the temperature and
pressure using this function, as

𝑇 =

(
𝜕𝑈

𝜕𝑆

)
𝑉
, 𝑝 = −

(
𝜕𝑈

𝜕𝑉

)
𝑆
; (9)

these are essentially equivalent to the differential definition, that
expresses the change in internal energy as a change in heat and
the amount of mechanical work the system does,

𝑑𝑈 = 𝑇 𝑑𝑆 − 𝑝 𝑑𝑉 , (10)

(the First Law of Thermodynamics) and in both cases the minus
sign is due to the energy decreasing if the system pushes its
volume bigger.

• The entropy is generally rather hard to measure, and many pro-
cesses we care about operate at a constant temperature, so we
would like to change to a function that depends on temperature
instead of entropy. (9) tells us what to do: the differential rela-
tion implies that we can do a Legendre transform, to define the
Helmholtz free energy

𝐹 (𝑇,𝑉 ) = inf
𝑆

(𝑈 −𝑇𝑆) . (11)

The differential relation for this potential is

𝑑𝐹 = 𝑑𝑈 − 𝑆 𝑑𝑇 −𝑇 𝑑𝑆 = −𝑆 𝑑𝑇 − 𝑝 𝑑𝑉 .

• 𝐹 is normally the most useful thermodynamic potential, but
we can equally obtain functions of other combinations by Le-
gendre transformations: for processes at constant pressure, the
enthalpy,

𝐻 (𝑆, 𝑝) = inf
𝑉

(𝑈 + 𝑝𝑉 )

and at constant pressure and temperature, the Gibbs free energy

𝐺 (𝑇, 𝑝) = inf
𝑆,𝑉

(𝑈 −𝑇𝑆 + 𝑝𝑉 ).

These satisfy the differential relations

𝑑𝐻 = 𝑇 𝑑𝑆 +𝑉 𝑑𝑝,

𝑑𝐺 = −𝑆 𝑑𝑇 +𝑉 𝑑𝑝.

Higher dimensions It is straightforward to extend the defini-
tion of the Legendre transform to functions from a set of vectors
𝐴 ∈ R𝑛 :

𝑓 ∗ (p) = sup
x∈𝐴

(p · x − 𝑓 (x)), (12)

and the rest of the theory follows in much the same way.
For example, if 𝑓 (x) = 𝑎‖x‖2/2, we take the gradient to find that

p − 𝑎x = 0,

for the minimum, so the closest point has x = p/𝑎, and substituting
this in gives 𝑓 ∗ (p) = 1

2𝑎 ‖p‖2.

Part II.
The Calculus of Variations

3. Functionals

A functional is a map from a space of functions (e.g. continuous
functions, or smooth functions) to R. We normally write a func-
tional as 𝐹 [𝑦], with the argument in square brackets. In this course,
functionals are generally given by integrals of the form

𝐹 [𝑦] =
ˆ 𝑏

𝑎
𝑓 (𝑥,𝑦 (𝑥), 𝑦′(𝑥), . . . ) 𝑑𝑥 . (13)

The variation, or first variation, of a functional is given by

𝐷𝐹 [𝑦] (𝜙) = lim
𝑡→0

𝐹 [𝑦 + 𝑡𝜙] − 𝐹 [𝑦]
𝑡

=
𝑑

𝑑𝑡
𝐹 [𝑦 + 𝑡𝜙]

����
𝑡=0

(14)

Conceptually, this is a directional derivative, in the direction of
𝜙 ; it is also known as the Gâteaux derivative. It is a linear
map on the space of 𝜙s. If we can separate it into the form´ 𝑏
𝑎 𝜙𝑔(𝑥,𝑦,𝑦′, . . . ) 𝑑𝑥 , which is like an inner product with 𝜙 , then
we call 𝑔 the functional derivative of 𝐹 ,

𝛿𝐹

𝛿𝑦
= 𝑔, (15)

or conversely, 𝐷𝐹 [𝑦] (𝜙) =
´ 𝑏
𝑎

𝛿𝐹
𝛿𝑦 (𝑥)𝜙 (𝑥) 𝑑𝑥 .

As with the finite-dimensional case, 𝐹 is said to have astationary
point at 𝑦 if 𝐷𝐹 [𝑦] (𝜙) = 0 for all appropriate 𝜙 . The study of the
stationary points of functionals is called the Calculus of Variations.

3.1. Euler–Lagrange Equations

Lemma (Fundamental Lemma of the Calculus of Variations). Sup-
pose that 𝑔 is continuous, and

ˆ 𝑏

𝑎
𝜙 (𝑥)𝑔(𝑥) 𝑑𝑥 = 0

for every smooth 𝜙 . Then 𝑔(𝑥) ≡ 0.

Sketch of proof. Suppose𝑔 is not identically zero. Then we can find
an interval where 𝑔 has one sign, and construct a 𝜙 that is zero out-
side this interval and has one sign inside, and it follows that the
integral cannot be zero. □

We compute a sufficient condition for the integral (13) to have
a stationary point. Suppose that the integrand is 𝑓 (𝑥,𝑦,𝑦′), and
we seek functions with known values at the endpoints. Thus we
should only consider 𝜙 which are zero at the endpoints. We have

𝐹 [𝑦 + 𝑡𝜙] − 𝐹 [𝑦]
𝑡

=
1
𝑡

ˆ 𝑏

𝑎
[𝑓 (𝑥,𝑦 + 𝑡𝜙,𝑦′ + 𝑡𝜙 ′) − 𝑓 (𝑥,𝑦,𝑦′)] 𝑑𝑥

=
ˆ 𝑏

𝑎

(
𝜕𝑓

𝜕𝑦
𝜙 + 𝜕𝑓

𝜕𝑦′
𝜙 ′ + 𝑜 (𝑡)

)
𝑑𝑥,

by using Taylor’s Theorem. Taking the 𝑡 → 0 gives 𝐷𝐹 [𝑦] (𝜙); we
want to express this as a function of 𝜙 only, so integrating the 𝜙 ′

term by parts, we find

𝐷𝐹 [𝑦] (𝜙) =
[
𝜙
𝜕𝑓

𝜕𝑦′

]𝑏
𝑎
+
ˆ 𝑏

𝑎

(
𝜕𝑓

𝜕𝑦
− 𝑑

𝑑𝑥

𝜕𝑓

𝜕𝑦′

)
𝜙 𝑑𝑥. (16)

The first term vanishes because we chose 𝜙 (𝑎) = 𝜙 (𝑏) = 0. Hence

𝛿𝐹

𝛿𝑦
=

𝜕𝑓

𝜕𝑦
− 𝑑

𝑑𝑥

𝜕𝑓

𝜕𝑦′
. (17)

We conclude that:
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A necessary and sufficient condition for 𝑦 to be a stationary point
of 𝐹 [𝑦] =

´ 𝑏
𝑎 𝑓 (𝑥,𝑦,𝑦′) 𝑑𝑥 is that

𝜕𝑓

𝜕𝑦
− 𝑑

𝑑𝑥

𝜕𝑓

𝜕𝑦′
= 0 (18)

in the interval (𝑎, 𝑏).
This type of calculation is half of the work in this course, the

other half being to solve the equations.

N.B. We are treating 𝑦 and 𝑦′ as independent variables, because
we are actually applying Taylor’s theorem in 𝑡 : what we are really
doing is differentiating 𝑓 with respect to whatever happens to be
in the 𝑛th “slot” in its list of arguments.

Independent of𝑦 Suppose that 𝑓 does not depend on𝑦. Then the
Euler–Lagrange equation reduces to

𝑑

𝑑𝑥

𝜕𝑓

𝜕𝑦′
= 0 =⇒ 𝜕𝑓

𝜕𝑦′
= 𝐴, (19)

a constant.

Independent of 𝑥 : Beltrami identity We can use the Euler-
Lagrange equation to prove:

𝑑

𝑑𝑥

(
𝑦′

𝜕𝑓

𝜕𝑦′
− 𝑓

)
= 𝑦′′

𝜕𝑓

𝜕𝑦′
+ 𝑦′ 𝑑

𝑑𝑥

𝜕𝑓

𝜕𝑦′
− 𝜕𝑓

𝜕𝑥
− 𝑦′

𝜕𝑓

𝜕𝑦
− 𝑦′′

𝜕𝑓

𝜕𝑦′

= − 𝜕𝑓

𝜕𝑥
+ 𝑦′

(
𝑑

𝑑𝑥

𝜕𝑓

𝜕𝑦′
− 𝜕𝑓

𝜕𝑦

)
= − 𝜕𝑓

𝜕𝑥
,

so if 𝑓 does not depend on 𝑥 ,

𝑦′
𝜕𝑓

𝜕𝑦′
− 𝑓 = 𝐴, (20)

a constant.

Lagrange Multipliers Of course, we can also ask about con-
strained minimisation problems, such as the shape of the caten-
ary, where the length of the chain is fixed. If we have an in-
tegral condition such as this on the whole curve, of the form
𝐺 [𝑦] =

´ 𝑏
𝑎 𝑔(𝑥,𝑦,𝑦′) 𝑑𝑥 = 0, we can insert a constant Lagrange

multiplier, so the total functional becomes

𝐹 [𝑦] − 𝜆𝐺 [𝑦] =
ˆ 𝑏

𝑎

(
𝑓 (𝑥,𝑦,𝑦′) − 𝜆𝑔(𝑥,𝑦,𝑦′)

)
𝑑𝑥. (21)

On the other hand, if the condition must be enforced pointwise,
such as finding geodesics on a sphere, where the point has to be
told continually to stay on the sphere, we need to consider a Lag-
range multiplier function, so the total Lagrangian has the form

ˆ 𝑏

𝑎

(
𝑓 (𝑥,𝑦,𝑦′) − 𝜆(𝑥)𝑔(𝑥,𝑦,𝑦′)

)
𝑑𝑥. (22)

Variable endpoints We may not have both ends of the curve
fixed: in this case, we can’t just use the Euler–Lagrange equation.
We also need a condition on the endpoint so that we can still have
a stationary point when we let the variation 𝜙 not take the value 0
at 𝑎 and 𝑏. This we get out of (16): an endpoint term vanishes if

𝜕𝑓

𝜕𝑦′
(𝑎) = 0; (23)

effectively a boundary condition to be used when solving the equa-
tions.

More functions If we have a vector of functions, y(𝑥), then the
directional derivative involves a vector function, ϕ(𝑥). Then the
expansion of 𝑓 (𝑥, y + ϕ, y′ + ϕ′) is

𝑓 (𝑥, y+ϕ, y′+ϕ′) = 𝑓 (𝑥, y, y′)+
∑
𝑖

𝜕𝑓

𝜕𝑦𝑖
𝜙𝑖+

∑
𝑖

𝜕𝑓

𝜕𝑦′𝑖
𝜙 ′
𝑖+𝑜 (‖ϕ‖, ‖ϕ′‖),

(24)
and the usual integration by parts leads to one Euler–Lagrange
equation for each function, or if you prefer, one for each independ-
ent variation 𝜙𝑖 :

𝜕𝑓

𝜕𝑦𝑖
− 𝑑

𝑑𝑥

(
𝜕𝑓

𝜕𝑦′𝑖

)
= 0. (25)

If 𝜕𝑓
𝜕𝑦𝑖

= 0, we again find that 𝜕𝑓
𝜕𝑦′𝑖

is constant. There is still one
Beltrami identity, arising from the total derivative

𝑑

𝑑𝑥

(∑
𝑖

𝑦′𝑖
𝜕𝑓

𝜕𝑦′𝑖
− 𝑓

)
= · · · = − 𝜕𝑓

𝜕𝑥
. (26)

More independent variables Suppose that the function is now
a function of a vector x. Then the integrand is a func-
tion of 𝑦 and its various partial derivatives, 𝑓 (x, 𝑦,∇𝑦) or
𝑓 (𝑥1, . . . , 𝑥𝑛, 𝑦, 𝜕1𝑦, . . . , 𝜕𝑛𝑦), where we abbreviate 𝜕

𝜕𝑥𝑖
= 𝜕𝑖 ; the

functional is something like
ˆ
𝑉
𝑓 (𝑥1, . . . , 𝑥𝑛, 𝑦, 𝜕1𝑦, . . . , 𝜕𝑛𝑦) 𝑑𝑥1 · · ·𝑑𝑥𝑛 . (27)

Carrying out the usual variation gives a boundary term´
𝜕𝑉 𝜙∇𝑦 𝑑S, and the Euler–Lagrange equation

𝜕𝑓

𝜕𝑦
−

∑
𝑖

𝜕

𝜕𝑥𝑖

𝜕𝑓

𝜕(𝜕𝑖𝑦)
= 0; (28)

or 𝜕𝑓
𝜕𝑦 − ∇ · 𝜕𝑓

𝜕 (∇𝑦) = 0 if you think that’s clearer. There is now
a Beltrami identity for each independent variable, from the total
derivatives

𝑑

𝑑𝑥𝑖

(
𝑦′

𝜕𝑓

𝜕𝑦′
− 𝑓

)
= · · · = − 𝜕𝑓

𝜕𝑥𝑖
. (29)

More derivatives Theessential proceedure for 𝑓 (𝑥,𝑦,𝑦′, 𝑦′′, . . . , 𝑦 (𝑛) )
is the same as (16): integrate by parts enough to move the derivat-
ives off the 𝜙 . We end up with some endpoint conditions that we
won’t worry about here, and

𝑛∑
𝑘=0

(−1)𝑘 𝑑𝑘

𝑑𝑥𝑘
𝜕𝑓

𝜕𝑦 (𝑘)
= 0. (30)

While there is a Beltrami identity for this generalisation, it still
contains total time derivatives, so is far less useful than the special
case where 𝑓 only depends on 𝑦 and 𝑦′.

3.2. Examples

Shortest distance between two points We all know it’s a straight
line, but how to prove it using CoV? We may choose our axes so
that the points are (0, 0) and (1, 0). We assume that the path is
a function of 𝑦 (𝑥) (can be more general and take a parametrised
path (𝑥 (𝑡), 𝑦 (𝑡)), which gives more equations, but trying to give a
simple example). The total length of the curve is

𝐿[𝑦] =
ˆ 1

0

√
1 + 𝑦′2 𝑑𝑥. (31)

Staring at this should suggest to you that𝑦′ = 0 is best. Let’s check:
Euler–Lagrange equation is

0 − 𝑑

𝑑𝑥

𝑦′
√
1 + 𝑦′2

= 0.
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Integrating once,
𝑦′ = 𝐴

√
1 + 𝑦′2,

or
(1 −𝐴2)𝑦′2 = 𝐴2 .

It follows that 𝑦′ is constant. To satisfy the boundary conditions
𝑦 (0) = 𝑦 (1) = 0, we must have 𝑦′ = 0, and hence the shortest
distance is 𝑦 = 0, as expected.

Brachistochrone Now we do a two-variable problem. Given
𝐵 = (0, 0) and 𝐶 = (𝑐,−𝑑) lower than 𝐵, what shape is the curve
joining 𝐵 and 𝐶 along which a particle will descend in least time?
It’s not a straight line in general.
To set up the problem, let the curve be (𝑥 (𝑡), 𝑦 (𝑡)). The total

time is given by
ˆ 𝑇

0
𝑑𝑡 =

ˆ 𝑐

0

𝑑𝑡

𝑑𝑥
𝑑𝑥 =

ˆ 𝑐

0

𝑑𝑥

¤𝑥 ,

providing that ¤𝑥 ≠ 0 and we can write the curve as 𝑦 (𝑥). Now, we
also know that energy is conserved, so taking the GPE to be zero
at 𝐵,

0 =𝑚𝑔𝑦 + 1
2
𝑚( ¤𝑥2 + ¤𝑦2) =𝑚𝑔𝑦 + 1

2
𝑚 ¤𝑥2

(
1 +

(
𝑑𝑦

𝑑𝑥

)2)
Hence, writing 𝑑𝑦/𝑑𝑥 = 𝑦′, the integral can be written

ˆ 𝑐

0

√
1 + 𝑦′2
√−2𝑔𝑦

𝑑𝑥 .

This is independent of 𝑥 , so it is sensible to use the Beltrami iden-
tity, which gives

−1
𝐴
√
2𝑔

=
𝑦′2

√−2𝑔𝑦
√
1 + 𝑦′2

−
√
1 + 𝑦′2
√−2𝑔𝑦

=
−1

√−2𝑔𝑦
√
1 + 𝑦′2

,

𝐴 a constant determined by the boundary conditions. Since we
expect 𝑦 < 0, we suppose 𝐴 > 0, and rearranging gives

1 =

√
𝑦√

𝐴 + 𝑦
𝑑𝑦

𝑑𝑥
,

offering us

𝑥 =
ˆ 𝑦

0

√
𝑌

√
𝐴 + 𝑌

𝑑𝑌,

since when 𝑥 = 0, 𝑦 = 0. Setting 𝑌 = −𝐴(1−𝑢2), so 𝑑𝑌 = −2𝑢𝐴𝑑𝑢,
we find

𝑥 =
ˆ 1

√
1−𝑦/𝐴

√
𝐴
√
1 − 𝑢2

√
𝐴𝑢2

2𝑢𝐴𝑑𝑢 = 2𝐴
ˆ 1

√
1−𝑦/𝐴

√
1 − 𝑢2 𝑑𝑢.

But this is the integral to calculate the area under a circle of ra-
dius 𝐴 up to a point a distance

√
1 − 𝑦/𝐴 = 𝑈 from the origin.

Some geometry allows us to compute the area as the difference of
a sector and a triangle, giving

𝑥 = 𝐴
(
arccos𝑈 −𝑈

√
1 −𝑈 2

)
= 1

2𝐴 (𝜃 − sin𝜃 ) ,

where 𝜃 = 2 arccos𝑈 is double the angle from the vertical axis.
Inverting the 𝑦 equation gives

𝑦 = −𝐴(1 − cos2 1
2𝜃 ) =

1
2𝐴(cos𝜃 − 1);

these are the equations for a cycloid. Making it pass through 𝐶 is
not analytically straightforward, but drawing a picture shows that
any straight line with negative gradient passing through the origin
intersects the cycloid once, so there is in fact a unique choice of 𝐴
so that the cycloid passes through 𝐶 .

Dido’s problem Also known as the isoperimetric problem. Want
to maximise the area we can enclose in a given length, 𝐿, of fence,
say. We need a Lagrange multiplier to enforce the length condi-
tion. We can again approach this by assuming that 𝑦 is a function
of 𝑥 , but this requires we assume symmetry about the 𝑥-axis, and
it is better to consider a parametrised curve (𝑥 (𝑡), 𝑦 (𝑡)). Then the
Lagrangian is

𝐿 = 1
2 (𝑦𝑥

′ − 𝑥𝑦′) + 𝜆
√
𝑥 ′2 + 𝑦′2,

using the area formula we found from Green’sTheorem in IA Vec-
toR Calculus. This looks like we should try the Beltrami iden-
tity, but alas, the expression vanishes! We have to use the Euler–
Lagrange equations. There is one for each of𝑥 and𝑦, but we can see
that the Lagrangian is invariant under replacing 𝑥 ↦→ 𝑦, 𝑦 ↦→ −𝑥 ,
(i.e. a rotation by 𝜋/2) so they will actually both contain the same
information. The 𝑥 equation is

0 =
1
2
𝑦′ − 𝑑

𝑑𝑡

(
−1
2
𝑦 + 𝜆

𝑥 ′

(𝑥 ′2 + 𝑦′2)1/2

)
(32)

...

= 𝑦′
(
1 − 𝜆

𝑦′𝑥 ′′ − 𝑥 ′𝑦′′

(𝑥 ′2 + 𝑦′2)3/2

)
.

Repeating this with 𝑦 gives the same equation with the leading
𝑦′ replaced by −𝑥 ′, and since we want to assume that the curve is
sensibly parametrised so that the derivative never totally vanishes,
we conclude that

𝑦′𝑥 ′′ − 𝑥 ′𝑦′′

(𝑥 ′2 + 𝑦′2)3/2
=

1
𝜆

This seems rather a mess, but recall from Vector Calculus that
the expression on the left is actually the curvature! Therefore the
Euler–Lagrange equation just tells us that to make the area station-
ary, the curvature is constant. And of course, a curve of constant
curvature is a circle. It follows that the maximum area is 𝐿2/(4𝜋).3

Catenary What is the shape assumed by a chain of length 𝐿 sus-
pended between points 𝐴 = (−𝑎, 0) and 𝐵 = (𝑎, 0), where 2𝑎 < 𝐿?
(The general case of points at different height follows by rescaling
and chopping the curve off after the right length, since the local
equations are the same.) This time we will rely on our intuition
that the curve is a single-valued function of𝑦 (𝑥). What do we need
to minimise? The gravitational potential energy, which is given by
−𝜌𝑔𝑦 𝑑𝑠 for a small chunk of curve. Hence the integral is

ˆ 𝑎

−𝑎
(−𝜆 − 𝜌𝑔𝑦)

√
1 + 𝑦′2 𝑑𝑥 .

Yet again the Beltrami identity’s the simplest way: we have

1
𝐴

=
(−𝜆 − 𝜌𝑔𝑦)
√
1 + 𝑦′2

𝑦′2 − (−𝜆 − 𝜌𝑔𝑦)
√
1 + 𝑦′2 = (𝜆 + 𝜌𝑔𝑦)

√
1 + 𝑦′2

.

Writing 𝐴𝜆 = 𝛽 and (𝐴𝜌𝑔) = 1/𝛼 , the equation rearranges into

1 =
𝑦′2

(𝑦/𝛼 + 𝛽)2 − 1
.

Integrating this equation gives

𝑦 = −𝛽 + 𝛼 cosh
(
(𝑥 − 𝑥0)/𝛼

)
,

and we need this to be symmetrical to fit through (±𝑎, 0), so 𝑥0 = 0.
We also have 𝛽 = 𝛼 cosh (𝑎/𝛼). The length is given by

𝐿 =
ˆ 𝑎

−𝑎

√
1 + 𝑦′2 𝑑𝑥 =

ˆ 𝑎

−𝑎
cosh (𝑥/𝛼) 𝑑𝑥 = 2𝛼 sinh (𝑎/𝛼) .

One can check that there is only one possible value of 𝛼 , since the
right-hand side is a decreasing function of 𝛼 that tends to 2𝑎 as
𝛼 → 0. So the solution is

𝑦 = 𝛼
(
cosh (𝑥/𝛼) − cosh (𝑎/𝛼)

)
.

3Alternatively, (32) is actually a total derivative, so we see that 𝑦 + 𝜆𝑥 ′/(
√
𝑥 ′2 + 𝑦′2) = 𝑦0 , and −𝑥 + 𝜆𝑦′/

√
𝑥 ′2 + 𝑦′2 = −𝑥0 . Rearranging, squaring and adding, we find that

(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 = 𝜆2 , the equation of a circle.
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Part III.
Applications

4. Fermat’s Principle

Fermat’s principle states that light rays take paths that make sta-
tionary the time taken; this is of course

𝑇 =
ˆ 𝑏

𝑎

𝑑𝑠

¤𝑣 =
1
𝑐

ˆ 𝑏

𝑎
𝑛𝑑𝑠 =

1
𝑐

ˆ 𝑏

𝑎
𝑛‖ ¤x(𝑡)‖𝑑𝑡, (33)

where 𝑣 is the speed of light at 𝑥 , 𝑐 is the speed of light in a vacuum,
and 𝑛 = 𝑐/𝑣 is the refractive index at the point 𝑥 .
If 𝑛 is constant, our result on shortest distances shows that light

travels in a straight line.

Snell’s Law Suppose we have a 2D medium in which the speed
of light varies with the height 𝑦, so the integral is

ˆ 𝑏

𝑎
𝑛(𝑦)

√
𝑥 ′2 + 𝑦′2 𝑑𝑡 .

Then the Euler–Lagrange equation for 𝑥 is

𝑑

𝑑𝑡

(
𝑛(𝑦) 𝑥 ′

√
𝑥 ′2 + 𝑦′2

)
= 0.

If we let 𝜃 be the angle of the path to the vertical, this equation
implies that 𝑛(𝑦) sin𝜃 (𝑦) is constant. This is Snell’s Law, which is
probably more familiar in the form when 𝑛 suddenly jumps from
𝑛1 to 𝑛2,

𝑛1 sin𝜃1 = 𝑛2 sin𝜃2 . (34)

5. Geodesics

A geodesic is a curve that minimises length (at least locally); we
know that the infinitesimal length is given by 𝑑𝑠 = ‖𝛾 ′(𝑡)‖ 𝑑𝑡 for a
curve 𝛾 . When we are looking for shortest distances on a surface
𝑔(x) = 0, we could minimise the length of the curve

´
‖x′(𝑡)‖ 𝑑𝑡

subject to the constraint that the curve lies in the surface (i.e min-
imise

´ (
‖x′(𝑡)‖−𝜆(𝑡)𝑔(t)

)
𝑑𝑡 ), but it is mathematically more fruit-

ful to introduce coordinates q parametrising the surface, and min-
imise directly in these. This requires two new concepts, which are
properly introduced in IB GeometRy: the idea of a tangent space
at a point on a surface, and with the Riemannian metric, which is a
device for measuring length in the tangent space.
The tangent space at a point 𝑝 is the set of vectors that are pos-

sible as tangent vectors of curves through 𝑝 on the surface. It is
a vector space, but there is no obvious way to measure the angle
between two curves, or the length of a vector: there is no nat-
ural inner product on this space, so we appeal to the inner product
that exists on Euclidean space. Suppose the parametrisation is
x = 𝜎 (q). Then if x lies in the surface, x′(𝑡) = ∑

𝑖 𝜎,𝑖𝑞
′𝑖 (𝑡), where

we write the coordinates with indices upstairs, and 𝜎,𝑖 = 𝜕𝜎/𝜕𝑞𝑖
(essentially all you need to know at this point is that upstairs in-
dices can only contract with downstairs and vice versa). Then

‖q′‖2 =
∑
𝑖 𝑗

(𝜎,𝑖 · 𝜎, 𝑗 )𝑞′𝑖𝑞′𝑗 =
∑
𝑖 𝑗

𝑔𝑖 𝑗𝑞
′𝑖𝑞′𝑗 , (35)

where 𝑔𝑖 𝑗 = 𝜎,𝑖 ·𝜎, 𝑗 is called themetric; it is clear that it is positive-
definite since the LHS is positive.4 Because the surface bends, the
basis 𝜎,𝑖 , and hence the tangent space, varies from point to point.
For a 2D surface, the line length can be written in the form

𝑑𝑠 =
√
𝐸𝑢 ′2 + 2𝐹𝑢 ′𝑣 ′ +𝐺𝑣 ′2 𝑑𝑡, (36)

and then the Euler–Lagrange equations are

𝐸𝑢𝑢
′2 + 2𝐹𝑢𝑢 ′𝑣 ′ +𝐺𝑢𝑣

′2

2
√
𝐸𝑢 ′2 + 2𝐹𝑢 ′𝑣 ′ +𝐺𝑣 ′2

− 𝑑

𝑑𝑡

𝐸𝑢 ′ + 𝐹𝑣 ′
√
𝐸𝑢 ′2 + 2𝐹𝑢 ′𝑣 ′ +𝐺𝑣 ′2

= 0. (37)

For the general metric 𝑔𝑖 𝑗 , we end up with equations for each
𝑞𝑖 (𝑡), in the form

0 =
𝑑

𝑑𝑡
(𝑔𝑖 𝑗 ¤𝑞 𝑗 +𝑔 𝑗𝑖 ¤𝑞 𝑗 )−𝜕𝑖𝑔 𝑗𝑘 ¤𝑞 𝑗 ¤𝑞𝑘 = 2𝑔𝑖 𝑗 ¥𝑞 𝑗 +2𝜕𝑘𝑔𝑖 𝑗 ¤𝑞 𝑗 ¤𝑞𝑘−𝜕𝑖𝑔 𝑗𝑘 ¤𝑞 𝑗 ¤𝑞𝑘 ,

where we have assumed that 𝑡 is the arc length, so the square roots
all disappear. Contracting with the inverse of the metric gives the
geodesic equation,

¥𝑞𝑖 + Γ𝑖𝑗𝑘 ¤𝑞
𝑗 ¤𝑞𝑘 = 0, (38)

where
Γ𝑖𝑗𝑘 =

1
2
𝑔𝑖𝑚 (𝜕𝑗𝑔𝑚𝑘 + 𝜕𝑘𝑔𝑚𝑗 − 𝜕𝑚𝑔 𝑗𝑘 ) (39)

are the Christoffel symbols, which are essential in understanding
derivatives in curved spaces (see PaRt II DiffeRential GeometRy
and GeneRal Relativity).

5.1. Example: On the sphere

The sphere is simple enough to be treated both ways.

With constraints The Lagrangian is

‖x′‖ − 𝜆(𝑡)(‖x‖ − 1) (40)

Differentiating with respect to 𝜆 gives the condition ‖x‖ = 1. On
the other hand, the Euler–Lagrange equations are

0 = −𝜆(𝑡) x
‖x‖ − 𝑑

𝑑𝑡

x′

‖x′‖ = −𝜆(𝑡)x − x′′

‖x′‖ + x′(x′ · x′′)
‖x′‖3

Now take a to be a constant vector perpendicular to x(0) and x′(0).
Then this equation implies that x′′(0) is also perpendicular to a.
Hence x is always perpendicular to a, so the curve lies in a plane
through the origin. (Recall from the Fresnet–Serret equations that
n′ = −𝜅t + 𝜏b, and if 𝜏 = 0, the curve is planar.) Such a circle is
called a great circle.

With parametrisation The obvious parametrisation for the
sphere is spherical coordinates, x = (cos𝜑 sin𝜃, sin𝜑 sin𝜃, cos𝜃 ).
The tangent vectors are then

𝜎,𝜃 = (cos𝜑 cos𝜃, cos𝜑 sin𝜃,− sin𝜃 )
𝜎,𝜑 = (− sin𝜑 sin𝜃, cos𝜑 sin𝜃, 0) .

From these we find the line element is

𝑑𝑠2 = 𝑑𝜃2 + sin2 𝜃 𝑑𝜑2, (41)

and therefore the Lagrangian is

ℓ [𝜃, 𝜑] =
ˆ 𝑏

𝑎

√
𝜃 ′2 + sin2 𝜃 𝜑 ′2 𝑑𝑡 (42)

The lack of 𝜑-dependence implies that

sin2 𝜃 𝜑 ′
√
𝜃 ′2 + sin2 𝜃 𝜑 ′2

= ℎ,

a constant, and the Euler–Lagrange equation for 𝜃 is

sin𝜃 cos𝜃 𝜑 ′2
√
𝜃 ′2 + sin2 𝜃 𝜑 ′2

− 𝑑

𝑑𝑡

𝜃 ′
√
𝜃 ′2 + sin2 𝜃 𝜑 ′2

= 0

Taking the arc length parametrisation,
√
𝜃 ′2 + sin2 𝜃 𝜑 ′2 = 1, so

sin2 𝜃 𝜑 ′ = ℎ, sin𝜃 cos𝜃 𝜑 ′2 − 𝜃 ′′ = 0.

Now, the sphere is symmetric enough that we can choose that
𝜑 ′(0) = 0, 𝜃 ′(0) = 1, and so ℎ = 0, and then sin2 𝜃 𝜑 ′ = 0. As-
suming that sin𝜃 ≠ 0, we then have 𝜑 ′ = 0, and so 𝜃 = 𝜃 (0) + 𝑡 ,
again a circle that lies in a plane through the origin.

4In more abstract spaces, we normally define the metric as a positive-definite symmetric tensor that does this measurement on the tangent space.
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6. Lagrangian Mechanics

Newtonian mechanics is essentially based on the equation𝑚¥x = F.
Hamilton and others found another way to talk about mechanics,
based on a variational principle, that makes it much easier to un-
derstand the significance of symmetries.
If the kinetic energy is written as 𝑇 and the potential energy as

𝑉 , then the Lagrangian is defined as 𝐿 = 𝑇 −𝑉 .5 (For simple sys-
tems, 𝑇 = 1

2𝑚‖ ¤x‖2, while 𝑉 (x, 𝑡) is the potential.) The action is

𝑆 [x] =
ˆ 𝑡1

𝑡0
𝐿(x, ¤x, 𝑡) 𝑑𝑡 . (43)

Hamilton’s Principle states that classical paths make stationary
the action.
Taking the simple form of the Lagrangian, we find via the Euler–

Lagrange equations that

0 =
𝜕𝐿

𝜕x
− 𝑑

𝑑𝑡

𝜕𝐿

𝜕 ¤x = −∇𝑉 − 𝑑

𝑑𝑡
(𝑚 ¤x) = −∇𝑉 −𝑚¥x,

which we recognise as Newton’s equations.

Example: central force Suppose we have central force, as in IA
Dynamics and Relativity. Then ‖ ¤x‖2 = ¤𝑟2 + 𝑟2 ( ¤𝜃2 + sin2 𝜃 ¤𝜑2),
and 𝑉 = 𝑉 (𝑟 ). Then 𝐿 does not depend on 𝜑 , so

𝜕𝐿

𝜕 ¤𝜑 =𝑚𝑟2 sin2 𝜃 ¤𝜑 = ℎ𝑚

is constant. The other equations are

𝑚¥𝑟 =𝑚𝑟 ( ¤𝜃2 + sin2 𝜃 ¤𝜑2) −𝑉 ′(𝑟 )

for the radius, and

𝑑

𝑑𝑡
(𝑟2 ¤𝜃 ) = 𝑟2 ¥𝜃 + 2𝑟 ¤𝜃 = 𝑟2 sin𝜃 cos𝜃 ¤𝜑2 .

This last shows that if we choose our axes so that 𝜃 (0) = 𝜋/2 and
¤𝜃 (0) = 0, 𝜃 remains zero, so the path lives in the equatorial plane.
Then sin𝜃 = 1, so we have

𝑚¥𝑟 =𝑚𝑟 ¤𝜑2 −𝑉 ′(𝑟 ) = 𝑚ℎ2

𝑟3
−𝑉 ′(𝑟 ),

as usual; the RHS is the negative derivative of what is usually called
the effective potential, 𝑉eff (𝑟 ) = 𝑚ℎ2

2𝑟 2 +𝑉 (𝑟 ).

7. Hamiltonian Mechanics

Lagrange’s equations are the 𝑛 second-order equations

𝜕𝐿

𝜕x
− 𝑑

𝑑𝑡

𝜕𝐿

𝜕 ¤x = 0,

derived from the Lagrangian 𝐿(x, ¤x, 𝑡). We can formulate mechan-
ics in another way, using first-order equations. We do this by using
the Legendre transform: define the Hamiltonian

𝐻 (p, x, 𝑡) = sup
¤x∈R𝑛

(p · ¤x − 𝐿(x, ¤x, 𝑡)) . (44)

𝐿 is a convex function of ¤x, so this makes sense. We have, of course,
p = 𝑚 ¤x if the Lagrangian has the simple kinetic term; either way,
p = 𝜕𝐿/𝜕 ¤x is called the conjugate momentum of x. Then we con-
sider the integral

𝐼 [p, x] =
ˆ

(p · ¤x − 𝐻 (p, x, 𝑡)) 𝑑𝑡 . (45)

The Euler–Lagrange equations of this are first-order:

¤x =
𝜕𝐻

𝜕p
, ¤p = − 𝜕𝐻

𝜕x
; (46)

these are Hamilton’s equations. There are 2𝑛 first-order equations.
What about 𝐻? We can compute

𝑑𝐻

𝑑𝑡
=

𝜕𝐻

𝜕x
· ¤x + 𝜕𝐻

𝜕p
· ¤p + 𝜕𝐻

𝜕𝑡
=

𝜕𝐻

𝜕𝑡
, (47)

using Hamilton’s equations, so 𝐻 only changes by its direct de-
pendence on 𝑡 . In fact, 𝐻 represents the energy of the system. (We
see that in the old notation, 𝐻 = 𝑇 +𝑉 , although the variables are
different.)

8. Noether’s Theorem and Conservation Laws

𝑡 ↦→ 𝑡 ′(𝑡), x ↦→ x′(𝑡 ′) is called a symmetry if the action 𝑆 is un-
changed by this substitution,

𝑆 ′[x′] =
ˆ 𝑏′

𝑎′
𝐿(𝑡 ′, x′, ¤x′) 𝑑𝑡 ′ = 𝑆 [x] . (48)

Theorem (Noether’s Theorem). For each continuous symmetry of 𝑆
there is a corresponding quantity 𝑄 , which is conserved by solutions
to the Euler–Lagrange equations.

Proof. Parametrise the symmetry as 𝑡 ↦→ 𝑡𝛼 , 𝑥 ↦→ 𝑥𝛼 . If the sym-
metry is continuous, we can expand to first order in 𝛼 about 𝛼 = 0,
where to first order in 𝛼 we have

𝑡𝛼 = 𝑡 + 𝛼𝜏 (𝑡) + 𝑜 (𝛼), 𝑥𝛼 (𝑡𝛼 ) = 𝑥 (𝑡) + 𝛼𝜉 (𝑡) + 𝑜 (𝛼) .

For now suppose that 𝛼 is a constant. From now on we discard
all terms beyond order 𝛼 without comment. Then the transformed
time-derivative is

𝑑𝑥𝛼
𝑑𝑡𝛼

(𝑡𝛼 ) =
𝑑𝑡

𝑑𝑡𝛼

𝑑

𝑑𝑡
(𝑥 (𝑡) + 𝛼𝜉 (𝑡)) = ¤𝑥 (𝑡) + 𝛼 ¤𝜉 (𝑡)

1 + 𝛼 ¤𝜏 (𝑡) = ¤𝑥 + 𝛼 ( ¤𝜉 − ¤𝜏 ¤𝑥),
(49)

where all terms on the RHS are evaluated at 𝑡 . Then the new action
is

𝑆𝛼 [𝑥𝛼 ] =
ˆ 𝑏𝛼

𝑎𝛼
𝐿

(
𝑡𝛼 , 𝑥𝛼 (𝑡𝛼 ),

𝑑𝑥𝛼
𝑑𝑡𝛼

(𝑡𝛼 )
)
𝑑𝑡𝛼 ,

Changing variables back to 𝑡 , we have 𝑑𝑡𝛼 = (1 + 𝛼 ¤𝜏) 𝑑𝑡 , so

𝑆𝛼 [𝑥𝛼 ] =
ˆ 𝑏

𝑎
𝐿

(
𝑡𝛼 (𝑡), 𝑥𝛼 (𝑡𝛼 (𝑡)),

𝑑𝑥𝛼
𝑑𝑡𝛼

(𝑡𝛼 (𝑡))
)
(1 + 𝛼 ¤𝜏) 𝑑𝑡, (50)

and now we can look directly at the difference 𝑆𝛼 [𝑥𝛼 ] − 𝑆 [𝑥] by
considering the integrands. Expanding 𝐿 for small 𝛼 gives

𝐿

(
𝑡𝛼 , 𝑥𝛼 (𝑡𝛼 ),

𝑑𝑥𝛼
𝑑𝑡𝛼

(𝑡𝛼 )
)
(1 + ¤𝛼𝜏) − 𝐿(𝑡, 𝑥, ¤𝑥)

= 𝛼 ¤𝜏𝐿 + 𝛼𝜏
𝜕𝐿

𝜕𝑡
+ 𝛼𝜉

𝜕𝐿

𝜕𝑥
+ 𝛼 ( ¤𝜉 − ¤𝜏 ¤𝑥) 𝜕𝐿

𝜕 ¤𝑥

= 𝛼

(
𝜏
𝜕𝐿

𝜕𝑡
+ 𝜉

𝜕𝐿

𝜕𝑥
+ ¤𝜏

(
𝐿 − ¤𝑥 𝜕𝐿

𝜕 ¤𝑥

)
+ ¤𝜉 𝜕𝐿

𝜕 ¤𝑥

)
.

Therefore for the transformation to be a symmetry, we must have

𝜏
𝜕𝐿

𝜕𝑡
+ ¤𝜏

(
𝐿 − ¤𝑥 𝜕𝐿

𝜕 ¤𝑥

)
+ 𝜉

𝜕𝐿

𝜕𝑥
+ ¤𝜉 𝜕𝐿

𝜕 ¤𝑥 = 0 (51)

Now we need the conserved current. It is not obvious that (51) is
the total derivative of something (indeed, we’ll find it isn’t). We
also need to use that 𝑥 solves the Euler–Lagrange equation

𝐸 (𝐿) B 𝜕𝐿

𝜕𝑥
− 𝑑

𝑑𝑡

𝜕𝐿

𝜕 ¤𝑥 = 0.

We notice that the first two terms of (51) look like fragments of a
derivative of 𝜏 (𝐿 − ¤𝑥𝜕𝐿/𝜕 ¤𝑥), so it seems sensible to compute the
total derivative of the bracket and see what happens. We find that

𝑑

𝑑𝑡

(
𝐿 − ¤𝑥 𝜕𝐿

𝜕 ¤𝑥

)
=

𝜕𝐿

𝜕𝑡
+ ¤𝑥 𝜕𝐿

𝜕𝑥
+ ¥𝑥 𝜕𝐿

𝜕𝑥
− ¥𝑥 𝜕𝐿

𝜕𝑥
− ¤𝑥 𝑑

𝑑𝑡

𝜕𝐿

𝜕 ¤𝑥 =
𝜕𝐿

𝜕𝑡
+ ¤𝑥𝐸 (𝐿) .

5Why? Because this works.
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Therefore in fact we have that

𝜏
𝜕𝐿

𝜕𝑡
+ ¤𝜏

(
𝐿 − ¤𝑥 𝜕𝐿

𝜕 ¤𝑥

)
=

𝑑

𝑑𝑡

(
𝜏

(
𝐿 − ¤𝑥 𝜕𝐿

𝜕 ¤𝑥

))
− 𝜏 ¤𝑥𝐸 (𝐿) .

Theother two terms are somewhat simpler: adding and subtracting
the same term gives

𝜉
𝜕𝐿

𝜕𝑥
+ ¤𝜉 𝜕𝐿

𝜕 ¤𝑥 = 𝜉

(
𝜕𝐿

𝜕𝑥
− 𝑑

𝑑𝑡

𝜕𝐿

𝜕 ¤𝑥

)
+ 𝜉 𝑑

𝑑𝑡

𝜕𝐿

𝜕 ¤𝑥 + ¤𝜉 𝜕𝐿
𝜕 ¤𝑥 = 𝜉𝐸 (𝐿) + 𝑑

𝑑𝑡

(
𝜉
𝑑𝐿

𝑑 ¤𝑥

)
Hence the expression on the left of (51) becomes

(𝜉 − 𝜏 ¤𝑥)𝐸 (𝐿) + 𝑑

𝑑𝑡

(
𝜏

(
𝐿 − ¤𝑥 𝜕𝐿

𝜕 ¤𝑥

)
+ 𝜉

𝜕𝐿

𝜕 ¤𝑥

)
If 𝑥 is a solution to 𝐸 (𝐿) = 0, the first term vanishes, and we see
that

𝑄 B 𝜏

(
𝐿 − ¤𝑥 𝜕𝐿

𝜕 ¤𝑥

)
+ 𝜉

𝜕𝐿

𝜕 ¤𝑥 (52)

is the required conserved quantity. □

The calculation in the proof is fairly tortuous. There is actually
a slightly puzzling method we can use to obtain 𝑄 directly from
the difference of the integrands: suppose that 𝛼 is a function of 𝑡 .
Then instead of (51) we find the difference of the integrands to first
order in 𝛼 and ¤𝛼 is

𝐿

(
𝑡𝛼 , 𝑥𝛼 (𝑡𝛼 ),

𝑑𝑥𝛼
𝑑𝑡𝛼

(𝑡𝛼 )
) (

1 + ¤(𝛼𝜏)
)
− 𝐿(𝑡, 𝑥, ¤𝑥)

= 𝛼𝜏
𝜕𝐿

𝜕𝑡
+ 𝛼𝜉

𝜕𝐿

𝜕𝑥
+ ¤(𝛼𝜏)

(
𝐿 − ¤𝑥 𝜕𝐿

𝜕 ¤𝑥

)
+ ¤(𝛼𝜉) 𝜕𝐿

𝜕 ¤𝑥...
= 𝛼

( ¤𝑄 + (𝜉 − 𝜏 ¤𝑥)𝐸 (𝐿)
)
+ ¤𝛼𝑄,

so if we let 𝛼 vary with 𝑡 , we can find 𝑄 by simply computing this
expansion and reading off the coefficient of ¤𝛼 .
It is simple to generalise this analysis tomore variables andmore

complicated Lagrangians: we simply obtain extra terms, with cor-
responding extra terms in the Euler–Lagrange equations, which
simplify into a form similar to the above.

Spatial Translations A simple continuous transformation of
space only is given by 𝜏 = 0, 𝜉 = 1, and then it’s clear that this
satisfies (51) if 𝜕𝐿/𝜕𝑥 = 0. Then 𝑄 = 𝜕𝐿/𝜕 ¤𝑥 is conserved, AKA the
momentum 𝑝 .

Time Translation The corresponding transformation for time is
𝜏 = 1, 𝜉 = 0. This is a symmetry if 𝜕𝐿/𝜕𝑡 = 0, and then the current
is 𝑄 = 𝐿 − ¤𝑥 𝜕𝐿

𝜕 ¤𝑥 , i.e. the energy.

Angular Momentum A small rotation about axis n is given by
x𝛼 = x+𝛼n×x. If 𝐿 is invariant under this rotation, the conserved
quantity is

𝜕𝐿

𝜕 ¤q · ξ = p · (n × x) = n · (x × p) = n · L,

the component of the angular momentum in the direction of n. If
𝐿 is unchanged for any n, every component of the angular mo-
mentum is conserved.

9. The Second Variation

Wewant to understandwhen the stationary point is a minimum, so
we want an equivalent of the Hessian. This is the second variation,
defined by

𝐹 [𝑦 + 𝑡𝜙] − 𝐹 [𝑦] − 𝑡𝐷𝐹 [𝑦] (𝜙) = 𝑡2𝐷2𝐹 [𝑦] (𝜙) + 𝑜 (𝑡2), (53)

i.e. the coefficient of 𝑡2 in the expansion.

We would like conditions on this that give us a minimum, say.
First, we find an expression for 𝐷2𝐹 [𝑦] (𝜙):

𝐹 [𝑦 + 𝑡𝜙] − 𝐹 [𝑦] − 𝑡𝐷𝐹 [𝑦] (𝜙)

=
ˆ 𝑏

𝑎

(
𝐿(𝑥,𝑦 + 𝑡𝜙,𝑦′ + 𝑡𝜙 ′) − 𝐿 − 𝑡𝜙

𝛿𝐹

𝛿𝑦

)
𝑑𝑥

=
1
2
𝑡2
ˆ 𝑏

𝑎

(
𝜙2

𝜕2𝐿

𝜕𝑦2
+ 2𝜙𝜙 ′ 𝜕2𝐿

𝜕𝑦′𝜕𝑦
+ 𝜙 ′2 𝜕

2𝐿

𝜕𝑦′2

)
𝑑𝑥 + 𝑜 (𝑡2).

Integrating by parts,

𝐷2𝐹 [𝑦] (𝜙) = 1
2

[
𝜙2

𝜕2𝐿

𝜕𝑦′𝜕𝑦

]𝑏
𝑎
+1
2

ˆ 𝑏

𝑎

(
𝜙2

(
𝜕2𝐿

𝜕𝑦2
− 𝑑

𝑑𝑥

𝜕2𝐿

𝜕𝑦′𝜕𝑦

)
+𝜙 ′2 𝜕

2𝐿

𝜕𝑦′2

)
𝑑𝑥.

(54)

For a minimum, we need this to be nonnegative at the point:
if it is everywhere nonnegative, the functional is convex, and any
minimum we can find will be a global one. We have to restrict 𝜙 to
satisfy the boundary conditions, and differentiable enough for the
integral to make sense. From now on, we take fixed 𝑦 at the ends,
so 𝜙 = 0 at the endpoints and the boundary term always vanishes.

Legendre condition A simple necessary condition that 𝑦 = 𝑦0
should be a local minimum is that

𝜕2𝐿

𝜕𝑦′2
(𝑦0) ⩾ 0; (55)

this is easy to see if we imagine a very wiggly 𝜙 that remains quite
small in magnitude: then if this coefficient is negative, we can
make 𝐷2𝐹 [𝑦0] (𝜙) as negative as we like.
We can rename the coefficients to write the second variation

more compactly as

𝐷2𝐹 [𝑦] (𝜙) = 1
2

ˆ 𝑏

𝑎

(
𝑃𝑦 (𝑥)𝜙 ′2 +𝑄𝑦 (𝑥)𝜙2

)
𝑑𝑥 . (56)

Legendre’s condition shows 𝑃𝑦0 ⩾ 0 is necessary, but this is not
sufficient. A sufficient condition for a local minimum at 𝑦0 is
𝑄𝑦0 (𝑥) ⩾ 0 and 𝑃𝑦0 (𝑥) > 0 for 𝑎 < 𝑥 < 𝑏. In particular, the
condition on 𝑃 ensures that the first term is positive.

Jacobi condition To find a better set of conditions, we subtract 0
from the second variation, by using

0 =
1
2

ˆ 𝑏

𝑎
(𝑤𝜙2)′ 𝑑𝑥 =

1
2

ˆ 𝑏

𝑎

(
𝑤′𝜙2 + 2𝜙𝜙 ′𝑤

)
𝑑𝑥. (57)

Then the second variation becomes

𝐷2𝐹 [𝑦] (𝜙) = 1
2

ˆ 𝑏

𝑎

(
𝑃𝜙 ′2 − 2𝑤𝜙𝜙 ′ + (𝑄 −𝑤′)𝜙2

)
𝑑𝑥,

and assuming 𝑃 > 0 and completing the square,

𝐷2𝐹 [𝑦] (𝜙) = 1
2

ˆ 𝑏

𝑎

(
𝑃

(
𝜙 ′ − 𝑤𝜙

𝑃

)2
+

(
𝑄 −𝑤′ − 𝑤2

𝑃

)
𝜙2

)
𝑑𝑥.

(58)
For the integrand to be a perfect square, we need to have

𝑄 −𝑤′ −𝑤2/𝑃 = 0. (59)

If this is the case, the integral is nonnegative. In fact it is posit-
ive, since to be zero, we would have to have 𝜙 ′ = 𝑤𝜙/𝑃 , of which
the only solution with a zero is identically zero. Hence the second
variation is then strictly positive.
We therefore have to solve (59). Note first that 𝑤 has no spe-

cified boundary conditions. (59) is nonlinear, but can be made lin-
ear at the cost of turning it into a second-order equation, by setting
𝑤 = −𝑃𝑢 ′/𝑢; it becomes

− (𝑃𝑢 ′)′ +𝑄𝑢 = 0. (60)

If there is a solution of this with no zeros in [𝑎, 𝑏] (so𝑤 still makes
sense), then the second variation will be positive. This is a Sturm–
Liouville equation, which you will learn all about in IB Methods.
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