The Γ Function

Properties useful for Asymptotic Methods

Richard Chapling v1 30 November 2024

Definition 1. For all z with $Re(z) > 0$ the *Gamma-function* is defned by

$$
\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt.
$$
 (1)

We basically only care about real z in this course.

1 Elementary formulae

Specifc values

$$
\Gamma(1) = 1 \tag{2}
$$

Proof. Integral is elementary for $z = 1$.

$$
\Gamma(1/2) = \sqrt{\pi} \tag{3}
$$

Proof.

$$
\Gamma(1/2)^2 = \int_{t=0}^{\infty} \int_{s=0}^{\infty} s^{-1/2} t^{-1/2} e^{-s-t} ds dt
$$

Change variables to $s = u(1 - v)$, $t = uv$, $ds dt = u du dv$

$$
= \int_{u=0}^{\infty} \int_{v=0}^{1} \frac{u^{-1/2 - 1/2 + 1}}{\sqrt{v(1 - v)}} e^{-u} dv du
$$

$$
= \left(\int_{0}^{\infty} e^{-u} du \right) \left(\int_{0}^{1} \frac{dv}{\sqrt{v(1 - v)}} \right)
$$

First integral is 1, second substitute $u = \sin^2 \theta$

$$
=\int_0^{\pi/2} 2\,d\theta=\pi,
$$

integrand is positive so take the positive root, done. \Box

Functional equation

$$
z\Gamma(z) = \Gamma(z+1) \tag{4}
$$

Proof. Integrate the definition by parts. \Box

Γ is an extension of the factorial For any $n \in \mathbb{N}$,

$$
\Gamma(n+1) = n!.\tag{5}
$$

Proof. By induction on n .

Generalised binomial coefficients For any $z \in \mathbb{C}$ and $|t| < 1$,

$$
(1+t)^{z} = \sum_{k=0}^{\infty} {z \choose k} t^{k}
$$

$$
= \sum_{k=0}^{\infty} \frac{z(z-1)\cdots(z-k+1)}{k!} t^{k}
$$

$$
= \sum_{k=0}^{\infty} \frac{\Gamma(z+1)}{\Gamma(z-k+1)k!} t^{k},
$$
(6)

i.e.

$$
\binom{z}{k} = \frac{\Gamma(z+1)}{\Gamma(z-k+1)k!} \tag{7}
$$

2 Substitutions

Scaling For any $a > 0$,

$$
\int_0^\infty t^{z-1} e^{-at} dt = \frac{\Gamma(z)}{a^z} \tag{8}
$$

(Also the Laplace transform of t^z .)

Proof. Put $t = au$ in the definition.

Exponentials containing a power For any $a > 0$,

$$
\int_0^\infty \exp(-t^a) \, dt = \Gamma\left(1 + \frac{1}{a}\right). \tag{9}
$$

Proof. Put
$$
t = u^a
$$
 in the definition.

Onesided Gaussian moments For any $a > -1$,

$$
\int_0^\infty t^a e^{-t^2} dt = \frac{1}{2} \Gamma\left(\frac{1+a}{2}\right) \tag{10}
$$

Proof. Put $t = u^2$ in the definition.

Twosided Gaussian moments If n is an even nonnegative integer, we have the formula \mathbf{E}

$$
\int_{-\infty}^{\infty} t^{2n} e^{-t^2/2} dt = 2^{n+1/2} \Gamma\left(n + \frac{1}{2}\right) = (2n - 1)!!\sqrt{2\pi}.
$$
 (11)

Proof. Put $t = su^2$ in the definition with $z = 1/2$. Use induction differentiate *n* times with respect to s induction, differentiate n times with respect to s .

¹Reminder: the double factorial n!! is defined by 1!! = 2!! = 1 and $(n+2)$!! = $(n+2)$ n!!. We also take (-1) !! = 1, we can extend to further odd negative integers by induction if we so desire.

3 Imaginary integrals

 $Γ$ with imaginary exponent If $0 < Re z < 1$,

$$
\int_0^\infty t^{z-1} e^{\pm it} dt = e^{\pm i\pi z/2} \Gamma(z) \tag{12}
$$

(This is an improper Riemann integral, it cannot be a Lebesgue integral.)

Proof. We prove the positive case. The negative case is exactly the same but we use a semicircle below the real axis. Consider

$$
\int_{\gamma_1+\gamma_2+\gamma_3+\gamma_4} w^{z-1} e^{iw} dw,
$$

where

- $\gamma_1 = (\varepsilon, R)$,
- $\gamma_2 = (Re^{i\theta} : \theta \in (0, \pi))$, (traversed anticlockwise)
- $v_3 = (iR, i\varepsilon)$,
- $y_4 = \{ \varepsilon e^{i\theta} : \theta \in (\pi, 0) \}$ (traversed clockwise).

See Figure 1.

Figure 1: Contour for imaginary Γ

and we follow the branch of w^z that is 1 at $w = 1$.

This integral vanishes by Cauchy's theorem since the function is analytic inside this contour. Now look at the individual contours:

 Y_1

$$
\int_{\gamma_1} = \int_{\varepsilon}^R t^{z-1} e^{it} dt \rightarrow \int_0^\infty t^{z-1} e^{it} dt
$$

- γ_2 By Jordan's Lemma, this converges to 0 as $R \to \infty$ since $Re(z) < 1$.
- γ_3 Substituting $w = e^{i\pi/2}u = iu$, so $dw = i du$,

$$
\int_{\gamma_3} = \int_{iR}^{i\epsilon} w^{z-1} e^{iw} dw
$$

\n
$$
= \int_{R}^{\epsilon} (u e^{i\pi/2})^{z-1} e^{-u} i du
$$

\n
$$
= -e^{i\pi z/2} \int_{\epsilon}^{R} u^{z-1} e^{-u} du \rightarrow -e^{i\pi z/2} \Gamma(z).
$$

²Reminder: the point of writing it this way is to emphasise how we compute the branch of w^z , by following γ_2 round from the real axis. ³And is certainly not relevant for this course!

 y_4 We have the bound

$$
\left| \int_{\gamma_4} \right| \leq \frac{\pi}{4} \varepsilon \varepsilon^{z-1} 1 = O(\varepsilon) \to 0,
$$

using the "rectangle bound" $|\int_{\gamma} f| < \ell(\gamma) \sup_{\gamma} f$.

Hence obtain result.

Imaginary integral with stationary point For any $a > 1$,

$$
\int_0^\infty e^{\pm it^a} dt = e^{\pm i\pi/(2a)} \Gamma\left(1 + \frac{1}{a}\right) \tag{13}
$$

Proof. Substitute $t = u^a$ in (12).

4 Miscellaneous

Complex conjugation

$$
\Gamma(\bar{z}) = \overline{\Gamma(z)} \tag{14}
$$

Refexion formula

$$
\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z} \tag{15}
$$

Most familiar way to prove this is to use the Beta function and a contour integral. See FURTHER COMPLEX METHODS.

Stirling's formula As $x \to +\infty$,

$$
\Gamma(x) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x \left(1 + \frac{1}{12x} + O\left(\frac{1}{x^2}\right)\right). \tag{16}
$$

Proof. In lectures/Example sheet $2!$ \Box

