The Γ Function

Properties useful for Asymptotic Methods

Richard Chapling

Definition 1. For all z with $\operatorname{Re}(z) > 0$ the *Gamma-function* is defined by

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt.$$
⁽¹⁾

We basically only care about real z in this course.

1 Elementary formulae

Specific values

$$\Gamma(1) = 1 \tag{2}$$

Proof. Integral is elementary for z = 1.

$$\Gamma(1/2) = \sqrt{\pi} \tag{3}$$

Proof.

$$\Gamma(1/2)^2 = \int_{t=0}^{\infty} \int_{s=0}^{\infty} s^{-1/2} t^{-1/2} e^{-s-t} \, ds \, dt$$

Change variables to s = u(1 - v), t = uv, ds dt = u du dv

$$= \int_{u=0}^{\infty} \int_{v=0}^{1} \frac{u^{-1/2-1/2+1}}{\sqrt{v(1-v)}} e^{-u} dv du$$
$$= \left(\int_{0}^{\infty} e^{-u} du\right) \left(\int_{0}^{1} \frac{dv}{\sqrt{v(1-v)}}\right)$$

First integral is 1, second substitute $u = \sin^2 \theta$

$$=\int_0^{\pi/2} 2\,d\theta=\pi,$$

integrand is positive so take the positive root, done. $\hfill \Box$

Functional equation

$$z\Gamma(z) = \Gamma(z+1) \tag{4}$$

Proof. Integrate the definition by parts.

 Γ is an extension of the factorial For any $n \in \mathbb{N}$,

$$\Gamma(n+1) = n!. \tag{5}$$

Proof. By induction on *n*.

Generalised binomial coefficients For any $z \in \mathbb{C}$ and |t| < 1,

$$(1+t)^{z} = \sum_{k=0}^{\infty} {\binom{z}{k}} t^{k}$$
$$= \sum_{k=0}^{\infty} \frac{z(z-1)\cdots(z-k+1)}{k!} t^{k}$$
$$= \sum_{k=0}^{\infty} \frac{\Gamma(z+1)}{\Gamma(z-k+1)k!} t^{k},$$
(6)

i.e.

$$\binom{z}{k} = \frac{\Gamma(z+1)}{\Gamma(z-k+1)k!}$$
(7)

2 Substitutions

Scaling For any a > 0,

$$\int_0^\infty t^{z-1} e^{-at} dt = \frac{\Gamma(z)}{a^z} \tag{8}$$

(Also the Laplace transform of t^{z} .)

Proof. Put t = au in the definition.

Exponentials containing a power For any a > 0,

$$\int_{0}^{\infty} \exp(-t^{a}) dt = \Gamma\left(1 + \frac{1}{a}\right).$$
(9)

Proof. Put
$$t = u^a$$
 in the definition.

Onesided Gaussian moments For any a > -1,

$$\int_{0}^{\infty} t^{a} e^{-t^{2}} dt = \frac{1}{2} \Gamma\left(\frac{1+a}{2}\right)$$
(10)

Proof. Put $t = u^2$ in the definition.

Twosided Gaussian moments If n is an even nonnegative integer, we have the formula

$$\int_{-\infty}^{\infty} t^{2n} e^{-t^2/2} dt = 2^{n+1/2} \Gamma\left(n + \frac{1}{2}\right) = (2n-1)!! \sqrt{2\pi}.$$
 (11)

Proof. Put $t = su^2$ in the definition with z = 1/2. Use induction, differentiate *n* times with respect to *s*.

П

v1 30 November 2024

¹Reminder: the double factorial *n*!! is defined by 1!! = 2!! = 1 and (n + 2)!! = (n + 2)n!!. We also take (-1)!! = 1, we can extend to further odd negative integers by induction if we so desire.

3 Imaginary integrals

 Γ with imaginary exponent If $0 < \operatorname{Re} z < 1$,

$$\int_0^\infty t^{z-1} e^{\pm it} dt = e^{\pm i\pi z/2} \Gamma(z) \tag{12}$$

(This is an improper Riemann integral, it cannot be a Lebesgue integral.)

Proof. We prove the positive case. The negative case is exactly the same but we use a semicircle below the real axis. Consider

$$\int_{\gamma_1+\gamma_2+\gamma_3+\gamma_4} w^{z-1} e^{iw} \, dw,$$

where

- $\gamma_1 = (\varepsilon, R),$
- $\gamma_2 = (Re^{i\theta} : \theta \in (0, \pi)), \text{(traversed anticlockwise)}$
- $\gamma_3 = (iR, i\varepsilon),$
- $\gamma_4 = \{\varepsilon e^{i\theta} : \theta \in (\pi, 0)\}$ (traversed clockwise).

See Figure 1.

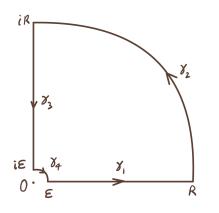


Figure 1: Contour for imaginary Γ

and we follow the branch of w^z that is 1 at w = 1.

This integral vanishes by Cauchy's theorem since the function is analytic inside this contour. Now look at the individual contours:

 γ_1

$$\int_{\gamma_1} = \int_{\varepsilon}^{R} t^{z-1} e^{it} dt \to \int_{0}^{\infty} t^{z-1} e^{it} dt$$

- γ_2 By Jordan's Lemma, this converges to 0 as $R \to \infty$ since $\operatorname{Re}(z) < 1$.
- y_3 Substituting $w = e^{i\pi/2}u = iu$, so dw = i du,

$$\int_{\gamma_3} = \int_{iR}^{i\varepsilon} w^{z-1} e^{iw} dw$$
$$= \int_R^{\varepsilon} (ue^{i\pi/2})^{z-1} e^{-u} i du$$
$$= -e^{i\pi z/2} \int_{\varepsilon}^R u^{z-1} e^{-u} du \to -e^{i\pi z/2} \Gamma(z).$$

²Reminder: the point of writing it this way is to emphasise how we compute the branch of w^z , by following γ_2 round from the real axis.

³And is certainly not relevant for this course!

 γ_4 We have the bound

$$\left|\int_{\gamma_4}\right| \leqslant \frac{\pi}{4} \varepsilon \varepsilon^{z-1} 1 = O(\varepsilon) \to 0,$$

using the "rectangle bound" $|\int_{\gamma} f| < \ell(\gamma) \sup_{\gamma} f$.

Hence obtain result.

Imaginary integral with stationary point For any a > 1,

$$\int_0^\infty e^{\pm it^a} dt = e^{\pm i\pi/(2a)} \Gamma\left(1 + \frac{1}{a}\right) \tag{13}$$

Proof. Substitute $t = u^a$ in (12).

4 Miscellaneous

Complex conjugation

$$\Gamma(\bar{z}) = \overline{\Gamma(z)} \tag{14}$$

Reflexion formula

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z} \tag{15}$$

Most familiar way to prove this is to use the Beta function and a contour integral. See FURTHER COMPLEX METHODS.

Stirling's formula As $x \to +\infty$,

$$\Gamma(x) \sim \sqrt{2\pi x} \left(\frac{x}{e}\right)^x \left(1 + \frac{1}{12x} + O\left(\frac{1}{x^2}\right)\right).$$
 (16)

Proof. In lectures/Example sheet 2!